Student-t VAEによるロバスト確率密度推定
Saved in:
Published in | 人工知能学会論文誌 Vol. 36; no. 3; pp. A-KA4_1 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 人工知能学会
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-0714 1346-8030 |
DOI | 10.1527/tjsai.36-3_A-KA4 |
Cover
Author | 岩田, 具治 高橋, 大志 山田, 真徳 鹿島, 久嗣 山中, 友貴 八木, 哲志 |
---|---|
Author_xml | – sequence: 1 fullname: 高橋, 大志 organization: 京都大学 – sequence: 1 fullname: 山中, 友貴 organization: 日本電信電話株式会社NTT セキュアプラットフォーム研究所 – sequence: 1 fullname: 岩田, 具治 organization: 日本電信電話株式会社NTT コミュニケーション科学基礎研究所 – sequence: 1 fullname: 鹿島, 久嗣 organization: 京都大学 – sequence: 1 fullname: 八木, 哲志 organization: 日本電信電話株式会社NTT ソフトウェアイノベーションセンタ – sequence: 1 fullname: 山田, 真徳 organization: 日本電信電話株式会社NTT セキュアプラットフォーム研究所 |
BookMark | eNo9T8tKw0AAXKSCtfbu0R_Yus9scgylVbHgwcd12WQTTahRkvXg0QRqQSiePXoQQdSz_Z0l9jeMtXiZGYZhhtkErewqiwDYxqiHORG7Ji1U0qMOpNKHhz5bA21MmQNdRFFrpZHAbAN0iyIJEMKEMox4G7Bjc6OjzECzc-YP7N2bLae2fLDVu60ebfllq-nieb6Y3defk3r-8j17rT-etsB6rMZF1F1xB5wOByf9fTg62jvo-yOYEooQ1IK4TigYibnrco8R6tKg2fWIDjDjgguNBQ-RdrTLiGZKNa7ScewoFmmP0Q4Y_vWmhVHnkbzOk0uV30qVmyQcR3J5W1JH0iX8si-b-_-B8ELlMlX0B2alYvI |
ContentType | Journal Article |
Copyright | 人工知能学会2021 |
Copyright_xml | – notice: 人工知能学会2021 |
DOI | 10.1527/tjsai.36-3_A-KA4 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1346-8030 |
EndPage | 9 |
ExternalDocumentID | article_tjsai_36_3_36_36_3_A_KA4_article_char_ja |
GroupedDBID | 123 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 E3Z EBS EJD JSF KQ8 OK1 PQQKQ RJT XSB |
ID | FETCH-LOGICAL-j2300-d7286c742f5885942383b34192db145757d175c0d6d842d4aa145adff6a4ed943 |
ISSN | 1346-0714 |
IngestDate | Wed Sep 03 06:31:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2300-d7286c742f5885942383b34192db145757d175c0d6d842d4aa145adff6a4ed943 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/tjsai/36/3/36_36-3_A-KA4/_article/-char/ja |
ParticipantIDs | jstage_primary_article_tjsai_36_3_36_36_3_A_KA4_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2021/05/01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021/05/01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 人工知能学会論文誌 |
PublicationYear | 2021 |
Publisher | 一般社団法人 人工知能学会 |
Publisher_xml | – name: 一般社団法人 人工知能学会 |
References | [Martinez-Cantin 17] Martinez-Cantin, R., McCourt, M., and Tee, K.: Robust Bayesian optimization with Student-t likelihood, arXiv preprint arXiv:1707.05729 (2017) [Johnson 13] Johnson, R. and Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems, pp. 315–323 (2013) [Lichman13] Lichman, M.: UCI Machine Learning Repository (2013) [Duchi 11] Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, Vol. 12, No. Jul, pp. 2121–2159 (2011) [Oord16] Oord, van den A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders, in Advances in Neural Information Processing Systems, pp. 4790–4798 (2016) [Kim 12] Kim, J. and Scott, C. D.: Robust kernel density estimation, Journal of Machine Learning Research, Vol. 13, No. 1, pp. 2529– 2565 (2012) [Reynolds 00] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B.: Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, Vol. 10, No. 1-3, pp. 19–41 (2000) [Burda 15] Burda, Y., Grosse, R., and Salakhutdinov, R.: Importance weighted autoencoders, arXiv preprint arXiv:1509.00519 (2015) [Zeiler 12] Zeiler, M. D.: ADADELTA: an adaptive learning rate method, arXiv preprint arXiv:1212.5701 (2012) [Goldstein 16] Goldstein, M. and Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS One, Vol. 11, No. 4, p. e0152173 (2016) [Yin 14] Yin, J. and Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242 (2014) [Goodfellow 16] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press (2016), http://www.deeplearningbook.org [Rezende14] Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models, in Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014) [Lange 89] Lange, K. L., Little, R. J., and Taylor, J. M.: Robust statistical modeling using the t distribution, Journal of the American Statistical Association, Vol. 84, No. 408, pp. 881–896 (1989) [Zivkovic 04] Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction, in Proceedings of the 17th International Conference on Pattern Recognition 2004 (ICPR 2004), Vol. 2, pp. 28–31 (2004) [Roeder 17] Roeder, G., Wu, Y., and Duvenaud, D. K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference, in Advances in Neural Information Processing Systems, pp. 6928–6937 (2017) [Suh 16] Suh, S., Chae, D. H., Kang, H.-G., and Choi, S.: Echo-state conditional variational autoencoder for anomaly detection, in 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1015–1022 (2016) [Miller 17] Miller, A., Foti, N., D’Amour, A., and Adams, R. P.: Reducing reparameterization gradient variance, in Advances in Neural Information Processing Systems 30, pp. 3711–3721 (2017) [Scott 15] Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons (2015) [Silverman 86] Silverman, B. W.: Density Estimation for Statistics and Data Analysis, Vol. 26, CRC Press (1986) [Wang 13] Wang, C., Chen, X., Smola, A. J., and Xing, E. P.: Variance reduction for stochastic gradient optimization, in Advances in Neural Information Processing Systems, pp. 181–189 (2013) [Kingma 14] Kingma, D. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014) [Geusebroek 05] Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.: The Amsterdam library of object images, International Journal of Computer Vision, Vol. 61, No. 1, pp. 103–112 (2005) [Maaten 08] Maaten, L. v. d. and Hinton, G.: Visualizing data using t-SNE, Journal of Machine Learning Research, Vol. 9, No. Nov, pp.2579–2605 (2008) [Jylänki 11] Jylänki, P., Vanhatalo, J., and Vehtari, A.: Robust Gaussian process regression with a Student-t likelihood, Journal of Machine Learning Research, Vol. 12, No. Nov, pp. 3227–3257 (2011) [Salimans17] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications, arXiv preprint arXiv:1701.05517 (2017) [Kingma 13] Kingma, D. P. and Welling, M.: Auto-encoding variational Bayes, arXiv preprint arXiv:1312.6114 (2013) [Tieleman 12] Tieleman, T. and Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, Vol. 4, No. 2, pp. 26–31 (2012) [Pedregosa11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, No. Oct, pp. 2825–2830 (2011) [McLachlan 04] McLachlan, G. and Peel, D.: Finite Mixture Models, John Wiley & Sons (2004) [Kingma 15] Kingma, D. P., Salimans, T., and Welling, M.: Variational dropout and the local reparameterization trick, in Advances in Neural Information Processing Systems, pp. 2575–2583 (2015) |
References_xml | – reference: [Burda 15] Burda, Y., Grosse, R., and Salakhutdinov, R.: Importance weighted autoencoders, arXiv preprint arXiv:1509.00519 (2015) – reference: [McLachlan 04] McLachlan, G. and Peel, D.: Finite Mixture Models, John Wiley & Sons (2004) – reference: [Reynolds 00] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B.: Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, Vol. 10, No. 1-3, pp. 19–41 (2000) – reference: [Tieleman 12] Tieleman, T. and Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, Vol. 4, No. 2, pp. 26–31 (2012) – reference: [Salimans17] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications, arXiv preprint arXiv:1701.05517 (2017) – reference: [Martinez-Cantin 17] Martinez-Cantin, R., McCourt, M., and Tee, K.: Robust Bayesian optimization with Student-t likelihood, arXiv preprint arXiv:1707.05729 (2017) – reference: [Oord16] Oord, van den A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders, in Advances in Neural Information Processing Systems, pp. 4790–4798 (2016) – reference: [Maaten 08] Maaten, L. v. d. and Hinton, G.: Visualizing data using t-SNE, Journal of Machine Learning Research, Vol. 9, No. Nov, pp.2579–2605 (2008) – reference: [Geusebroek 05] Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.: The Amsterdam library of object images, International Journal of Computer Vision, Vol. 61, No. 1, pp. 103–112 (2005) – reference: [Silverman 86] Silverman, B. W.: Density Estimation for Statistics and Data Analysis, Vol. 26, CRC Press (1986) – reference: [Kingma 15] Kingma, D. P., Salimans, T., and Welling, M.: Variational dropout and the local reparameterization trick, in Advances in Neural Information Processing Systems, pp. 2575–2583 (2015) – reference: [Rezende14] Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models, in Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014) – reference: [Miller 17] Miller, A., Foti, N., D’Amour, A., and Adams, R. P.: Reducing reparameterization gradient variance, in Advances in Neural Information Processing Systems 30, pp. 3711–3721 (2017) – reference: [Roeder 17] Roeder, G., Wu, Y., and Duvenaud, D. K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference, in Advances in Neural Information Processing Systems, pp. 6928–6937 (2017) – reference: [Pedregosa11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, No. Oct, pp. 2825–2830 (2011) – reference: [Zeiler 12] Zeiler, M. D.: ADADELTA: an adaptive learning rate method, arXiv preprint arXiv:1212.5701 (2012) – reference: [Yin 14] Yin, J. and Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242 (2014) – reference: [Goldstein 16] Goldstein, M. and Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS One, Vol. 11, No. 4, p. e0152173 (2016) – reference: [Johnson 13] Johnson, R. and Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems, pp. 315–323 (2013) – reference: [Duchi 11] Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, Vol. 12, No. Jul, pp. 2121–2159 (2011) – reference: [Jylänki 11] Jylänki, P., Vanhatalo, J., and Vehtari, A.: Robust Gaussian process regression with a Student-t likelihood, Journal of Machine Learning Research, Vol. 12, No. Nov, pp. 3227–3257 (2011) – reference: [Scott 15] Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons (2015) – reference: [Kim 12] Kim, J. and Scott, C. D.: Robust kernel density estimation, Journal of Machine Learning Research, Vol. 13, No. 1, pp. 2529– 2565 (2012) – reference: [Kingma 14] Kingma, D. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014) – reference: [Kingma 13] Kingma, D. P. and Welling, M.: Auto-encoding variational Bayes, arXiv preprint arXiv:1312.6114 (2013) – reference: [Lange 89] Lange, K. L., Little, R. J., and Taylor, J. M.: Robust statistical modeling using the t distribution, Journal of the American Statistical Association, Vol. 84, No. 408, pp. 881–896 (1989) – reference: [Goodfellow 16] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press (2016), http://www.deeplearningbook.org – reference: [Wang 13] Wang, C., Chen, X., Smola, A. J., and Xing, E. P.: Variance reduction for stochastic gradient optimization, in Advances in Neural Information Processing Systems, pp. 181–189 (2013) – reference: [Suh 16] Suh, S., Chae, D. H., Kang, H.-G., and Choi, S.: Echo-state conditional variational autoencoder for anomaly detection, in 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1015–1022 (2016) – reference: [Lichman13] Lichman, M.: UCI Machine Learning Repository (2013) – reference: [Zivkovic 04] Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction, in Proceedings of the 17th International Conference on Pattern Recognition 2004 (ICPR 2004), Vol. 2, pp. 28–31 (2004) |
SSID | ssib001234105 ssib008501343 ssib047348305 ssib000961560 ssj0057238 ssib006575950 |
Score | 2.3040304 |
SourceID | jstage |
SourceType | Publisher |
StartPage | A-KA4_1 |
SubjectTerms | deep learning generative model variational autoencoder |
Title | Student-t VAEによるロバスト確率密度推定 |
URI | https://www.jstage.jst.go.jp/article/tjsai/36/3/36_36-3_A-KA4/_article/-char/ja |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 人工知能学会論文誌, 2021/05/01, Vol.36(3), pp.A-KA4_1-9 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwMCrlwoU34q094FOVktiOY5-Q082qAoGEaFFvUZ5S91AQbC_c2JWgElLFmSMHhISAM73zJdHS32DG8SYB9UCLtPKOJuMZjyfOjJOx7Th3RKF4qSrp5l5GXc5DD56DNHfzSqC_LjJqst0fPhLrm_z-VrC1dOpnL2tpd5Kt5q-OXFdyEqsCDuyKq2SPYdmWKSAABvtCCRaG8p9s_KTZmNKdrDzVMYkZhIVERwagRMoF0GAY0UMLKM9eipTFIHFINGA0AjImMiRxQPSISIEA4DUAAi9paS7FROl-bEtijmTIAeiBW4Cs1MgAEqVEQ1NxaFgB8RpwwEvQZmWYQ4lyAaOJbN_fklgZEokkWqFCcGMYVpxo085oRFTY0QPCxx8KkSjQ0suR6Q1JItCU_0FPkTO2F6p4Lb1RBKQifdRvD_QcyMSKoJZo6DlioQpgFajP-m9UqN_lL5oxYNsmPdM30Mg1YwFAxoZBBAyMZDBX0Hbtysk6ued6GBdmOVnjmTuc9OyXK-uvmg1j7LhkPeej3QeaJ34vllFHOsmA4mf6yfhlur3KhMsSU7ELCNo0TXtjJ4Y0YSJhpsB_naCsBQGuEEzGME05TUMIYTE34nEvylfC78_CIVjC5OLusY-HxPY-rssA5iXdLnEcN2AybqkJsAI8J8-8R7EdZrMPQK27fysFceUYZlmLDE0TNG6cd87a2d5ANwpccJbG6UXn3OIklYF1rJcc3o7kAYzk-vWXerpXT9_Vs6_17H09_VHP9g4_Hhzuv51_fzM_-PRr__P824fLzuYo3lhbd-15Ju4YJvqeW4RUijzktAqkDBRMZCTLcD9FWmQ-h04ICwjmc68QheS04GkK2LSoKpHyEp6p7IqzvPNsp7zqDKqyLL20EKIqOK9olvlpzmjOKpllLM39a869Ru_kebNpTXJcW17_bw43nDPd6LrpLE9e7Ja3IIKfZLfN_fEbTxi7NA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student-t+VAE%E3%81%AB%E3%82%88%E3%82%8B%E3%83%AD%E3%83%90%E3%82%B9%E3%83%88%E7%A2%BA%E7%8E%87%E5%AF%86%E5%BA%A6%E6%8E%A8%E5%AE%9A&rft.jtitle=%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E8%AA%8C&rft.au=%E9%AB%98%E6%A9%8B%2C+%E5%A4%A7%E5%BF%97&rft.au=%E5%B1%B1%E4%B8%AD%2C+%E5%8F%8B%E8%B2%B4&rft.au=%E5%B2%A9%E7%94%B0%2C+%E5%85%B7%E6%B2%BB&rft.au=%E9%B9%BF%E5%B3%B6%2C+%E4%B9%85%E5%97%A3&rft.date=2021-05-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=36&rft.issue=3&rft.spage=A-KA4_1&rft.epage=9&rft_id=info:doi/10.1527%2Ftjsai.36-3_A-KA4&rft.externalDocID=article_tjsai_36_3_36_36_3_A_KA4_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon |