Student-t VAEによるロバスト確率密度推定

Saved in:
Bibliographic Details
Published in人工知能学会論文誌 Vol. 36; no. 3; pp. A-KA4_1 - 9
Main Authors 高橋, 大志, 山中, 友貴, 岩田, 具治, 鹿島, 久嗣, 八木, 哲志, 山田, 真徳
Format Journal Article
LanguageJapanese
Published 一般社団法人 人工知能学会 01.05.2021
Subjects
Online AccessGet full text
ISSN1346-0714
1346-8030
DOI10.1527/tjsai.36-3_A-KA4

Cover

Author 岩田, 具治
高橋, 大志
山田, 真徳
鹿島, 久嗣
山中, 友貴
八木, 哲志
Author_xml – sequence: 1
  fullname: 高橋, 大志
  organization: 京都大学
– sequence: 1
  fullname: 山中, 友貴
  organization: 日本電信電話株式会社NTT セキュアプラットフォーム研究所
– sequence: 1
  fullname: 岩田, 具治
  organization: 日本電信電話株式会社NTT コミュニケーション科学基礎研究所
– sequence: 1
  fullname: 鹿島, 久嗣
  organization: 京都大学
– sequence: 1
  fullname: 八木, 哲志
  organization: 日本電信電話株式会社NTT ソフトウェアイノベーションセンタ
– sequence: 1
  fullname: 山田, 真徳
  organization: 日本電信電話株式会社NTT セキュアプラットフォーム研究所
BookMark eNo9T8tKw0AAXKSCtfbu0R_Yus9scgylVbHgwcd12WQTTahRkvXg0QRqQSiePXoQQdSz_Z0l9jeMtXiZGYZhhtkErewqiwDYxqiHORG7Ji1U0qMOpNKHhz5bA21MmQNdRFFrpZHAbAN0iyIJEMKEMox4G7Bjc6OjzECzc-YP7N2bLae2fLDVu60ebfllq-nieb6Y3defk3r-8j17rT-etsB6rMZF1F1xB5wOByf9fTg62jvo-yOYEooQ1IK4TigYibnrco8R6tKg2fWIDjDjgguNBQ-RdrTLiGZKNa7ScewoFmmP0Q4Y_vWmhVHnkbzOk0uV30qVmyQcR3J5W1JH0iX8si-b-_-B8ELlMlX0B2alYvI
ContentType Journal Article
Copyright 人工知能学会2021
Copyright_xml – notice: 人工知能学会2021
DOI 10.1527/tjsai.36-3_A-KA4
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1346-8030
EndPage 9
ExternalDocumentID article_tjsai_36_3_36_36_3_A_KA4_article_char_ja
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
JSF
KQ8
OK1
PQQKQ
RJT
XSB
ID FETCH-LOGICAL-j2300-d7286c742f5885942383b34192db145757d175c0d6d842d4aa145adff6a4ed943
ISSN 1346-0714
IngestDate Wed Sep 03 06:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2300-d7286c742f5885942383b34192db145757d175c0d6d842d4aa145adff6a4ed943
OpenAccessLink https://www.jstage.jst.go.jp/article/tjsai/36/3/36_36-3_A-KA4/_article/-char/ja
ParticipantIDs jstage_primary_article_tjsai_36_3_36_36_3_A_KA4_article_char_ja
PublicationCentury 2000
PublicationDate 2021/05/01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021/05/01
  day: 01
PublicationDecade 2020
PublicationTitle 人工知能学会論文誌
PublicationYear 2021
Publisher 一般社団法人 人工知能学会
Publisher_xml – name: 一般社団法人 人工知能学会
References [Martinez-Cantin 17] Martinez-Cantin, R., McCourt, M., and Tee, K.: Robust Bayesian optimization with Student-t likelihood, arXiv preprint arXiv:1707.05729 (2017)
[Johnson 13] Johnson, R. and Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems, pp. 315–323 (2013)
[Lichman13] Lichman, M.: UCI Machine Learning Repository (2013)
[Duchi 11] Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, Vol. 12, No. Jul, pp. 2121–2159 (2011)
[Oord16] Oord, van den A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders, in Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)
[Kim 12] Kim, J. and Scott, C. D.: Robust kernel density estimation, Journal of Machine Learning Research, Vol. 13, No. 1, pp. 2529– 2565 (2012)
[Reynolds 00] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B.: Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, Vol. 10, No. 1-3, pp. 19–41 (2000)
[Burda 15] Burda, Y., Grosse, R., and Salakhutdinov, R.: Importance weighted autoencoders, arXiv preprint arXiv:1509.00519 (2015)
[Zeiler 12] Zeiler, M. D.: ADADELTA: an adaptive learning rate method, arXiv preprint arXiv:1212.5701 (2012)
[Goldstein 16] Goldstein, M. and Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS One, Vol. 11, No. 4, p. e0152173 (2016)
[Yin 14] Yin, J. and Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242 (2014)
[Goodfellow 16] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press (2016), http://www.deeplearningbook.org
[Rezende14] Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models, in Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014)
[Lange 89] Lange, K. L., Little, R. J., and Taylor, J. M.: Robust statistical modeling using the t distribution, Journal of the American Statistical Association, Vol. 84, No. 408, pp. 881–896 (1989)
[Zivkovic 04] Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction, in Proceedings of the 17th International Conference on Pattern Recognition 2004 (ICPR 2004), Vol. 2, pp. 28–31 (2004)
[Roeder 17] Roeder, G., Wu, Y., and Duvenaud, D. K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference, in Advances in Neural Information Processing Systems, pp. 6928–6937 (2017)
[Suh 16] Suh, S., Chae, D. H., Kang, H.-G., and Choi, S.: Echo-state conditional variational autoencoder for anomaly detection, in 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1015–1022 (2016)
[Miller 17] Miller, A., Foti, N., D’Amour, A., and Adams, R. P.: Reducing reparameterization gradient variance, in Advances in Neural Information Processing Systems 30, pp. 3711–3721 (2017)
[Scott 15] Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons (2015)
[Silverman 86] Silverman, B. W.: Density Estimation for Statistics and Data Analysis, Vol. 26, CRC Press (1986)
[Wang 13] Wang, C., Chen, X., Smola, A. J., and Xing, E. P.: Variance reduction for stochastic gradient optimization, in Advances in Neural Information Processing Systems, pp. 181–189 (2013)
[Kingma 14] Kingma, D. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)
[Geusebroek 05] Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.: The Amsterdam library of object images, International Journal of Computer Vision, Vol. 61, No. 1, pp. 103–112 (2005)
[Maaten 08] Maaten, L. v. d. and Hinton, G.: Visualizing data using t-SNE, Journal of Machine Learning Research, Vol. 9, No. Nov, pp.2579–2605 (2008)
[Jylänki 11] Jylänki, P., Vanhatalo, J., and Vehtari, A.: Robust Gaussian process regression with a Student-t likelihood, Journal of Machine Learning Research, Vol. 12, No. Nov, pp. 3227–3257 (2011)
[Salimans17] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications, arXiv preprint arXiv:1701.05517 (2017)
[Kingma 13] Kingma, D. P. and Welling, M.: Auto-encoding variational Bayes, arXiv preprint arXiv:1312.6114 (2013)
[Tieleman 12] Tieleman, T. and Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, Vol. 4, No. 2, pp. 26–31 (2012)
[Pedregosa11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, No. Oct, pp. 2825–2830 (2011)
[McLachlan 04] McLachlan, G. and Peel, D.: Finite Mixture Models, John Wiley & Sons (2004)
[Kingma 15] Kingma, D. P., Salimans, T., and Welling, M.: Variational dropout and the local reparameterization trick, in Advances in Neural Information Processing Systems, pp. 2575–2583 (2015)
References_xml – reference: [Burda 15] Burda, Y., Grosse, R., and Salakhutdinov, R.: Importance weighted autoencoders, arXiv preprint arXiv:1509.00519 (2015)
– reference: [McLachlan 04] McLachlan, G. and Peel, D.: Finite Mixture Models, John Wiley & Sons (2004)
– reference: [Reynolds 00] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B.: Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, Vol. 10, No. 1-3, pp. 19–41 (2000)
– reference: [Tieleman 12] Tieleman, T. and Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, Vol. 4, No. 2, pp. 26–31 (2012)
– reference: [Salimans17] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications, arXiv preprint arXiv:1701.05517 (2017)
– reference: [Martinez-Cantin 17] Martinez-Cantin, R., McCourt, M., and Tee, K.: Robust Bayesian optimization with Student-t likelihood, arXiv preprint arXiv:1707.05729 (2017)
– reference: [Oord16] Oord, van den A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders, in Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)
– reference: [Maaten 08] Maaten, L. v. d. and Hinton, G.: Visualizing data using t-SNE, Journal of Machine Learning Research, Vol. 9, No. Nov, pp.2579–2605 (2008)
– reference: [Geusebroek 05] Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.: The Amsterdam library of object images, International Journal of Computer Vision, Vol. 61, No. 1, pp. 103–112 (2005)
– reference: [Silverman 86] Silverman, B. W.: Density Estimation for Statistics and Data Analysis, Vol. 26, CRC Press (1986)
– reference: [Kingma 15] Kingma, D. P., Salimans, T., and Welling, M.: Variational dropout and the local reparameterization trick, in Advances in Neural Information Processing Systems, pp. 2575–2583 (2015)
– reference: [Rezende14] Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models, in Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014)
– reference: [Miller 17] Miller, A., Foti, N., D’Amour, A., and Adams, R. P.: Reducing reparameterization gradient variance, in Advances in Neural Information Processing Systems 30, pp. 3711–3721 (2017)
– reference: [Roeder 17] Roeder, G., Wu, Y., and Duvenaud, D. K.: Sticking the landing: Simple, lower-variance gradient estimators for variational inference, in Advances in Neural Information Processing Systems, pp. 6928–6937 (2017)
– reference: [Pedregosa11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, No. Oct, pp. 2825–2830 (2011)
– reference: [Zeiler 12] Zeiler, M. D.: ADADELTA: an adaptive learning rate method, arXiv preprint arXiv:1212.5701 (2012)
– reference: [Yin 14] Yin, J. and Wang, J.: A dirichlet multinomial mixture model-based approach for short text clustering, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242 (2014)
– reference: [Goldstein 16] Goldstein, M. and Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS One, Vol. 11, No. 4, p. e0152173 (2016)
– reference: [Johnson 13] Johnson, R. and Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems, pp. 315–323 (2013)
– reference: [Duchi 11] Duchi, J., Hazan, E., and Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, Vol. 12, No. Jul, pp. 2121–2159 (2011)
– reference: [Jylänki 11] Jylänki, P., Vanhatalo, J., and Vehtari, A.: Robust Gaussian process regression with a Student-t likelihood, Journal of Machine Learning Research, Vol. 12, No. Nov, pp. 3227–3257 (2011)
– reference: [Scott 15] Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons (2015)
– reference: [Kim 12] Kim, J. and Scott, C. D.: Robust kernel density estimation, Journal of Machine Learning Research, Vol. 13, No. 1, pp. 2529– 2565 (2012)
– reference: [Kingma 14] Kingma, D. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)
– reference: [Kingma 13] Kingma, D. P. and Welling, M.: Auto-encoding variational Bayes, arXiv preprint arXiv:1312.6114 (2013)
– reference: [Lange 89] Lange, K. L., Little, R. J., and Taylor, J. M.: Robust statistical modeling using the t distribution, Journal of the American Statistical Association, Vol. 84, No. 408, pp. 881–896 (1989)
– reference: [Goodfellow 16] Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press (2016), http://www.deeplearningbook.org
– reference: [Wang 13] Wang, C., Chen, X., Smola, A. J., and Xing, E. P.: Variance reduction for stochastic gradient optimization, in Advances in Neural Information Processing Systems, pp. 181–189 (2013)
– reference: [Suh 16] Suh, S., Chae, D. H., Kang, H.-G., and Choi, S.: Echo-state conditional variational autoencoder for anomaly detection, in 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1015–1022 (2016)
– reference: [Lichman13] Lichman, M.: UCI Machine Learning Repository (2013)
– reference: [Zivkovic 04] Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction, in Proceedings of the 17th International Conference on Pattern Recognition 2004 (ICPR 2004), Vol. 2, pp. 28–31 (2004)
SSID ssib001234105
ssib008501343
ssib047348305
ssib000961560
ssj0057238
ssib006575950
Score 2.3040304
SourceID jstage
SourceType Publisher
StartPage A-KA4_1
SubjectTerms deep learning
generative model
variational autoencoder
Title Student-t VAEによるロバスト確率密度推定
URI https://www.jstage.jst.go.jp/article/tjsai/36/3/36_36-3_A-KA4/_article/-char/ja
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 人工知能学会論文誌, 2021/05/01, Vol.36(3), pp.A-KA4_1-9
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwMCrlwoU34q094FOVktiOY5-Q082qAoGEaFFvUZ5S91AQbC_c2JWgElLFmSMHhISAM73zJdHS32DG8SYB9UCLtPKOJuMZjyfOjJOx7Th3RKF4qSrp5l5GXc5DD56DNHfzSqC_LjJqst0fPhLrm_z-VrC1dOpnL2tpd5Kt5q-OXFdyEqsCDuyKq2SPYdmWKSAABvtCCRaG8p9s_KTZmNKdrDzVMYkZhIVERwagRMoF0GAY0UMLKM9eipTFIHFINGA0AjImMiRxQPSISIEA4DUAAi9paS7FROl-bEtijmTIAeiBW4Cs1MgAEqVEQ1NxaFgB8RpwwEvQZmWYQ4lyAaOJbN_fklgZEokkWqFCcGMYVpxo085oRFTY0QPCxx8KkSjQ0suR6Q1JItCU_0FPkTO2F6p4Lb1RBKQifdRvD_QcyMSKoJZo6DlioQpgFajP-m9UqN_lL5oxYNsmPdM30Mg1YwFAxoZBBAyMZDBX0Hbtysk6ued6GBdmOVnjmTuc9OyXK-uvmg1j7LhkPeej3QeaJ34vllFHOsmA4mf6yfhlur3KhMsSU7ELCNo0TXtjJ4Y0YSJhpsB_naCsBQGuEEzGME05TUMIYTE34nEvylfC78_CIVjC5OLusY-HxPY-rssA5iXdLnEcN2AybqkJsAI8J8-8R7EdZrMPQK27fysFceUYZlmLDE0TNG6cd87a2d5ANwpccJbG6UXn3OIklYF1rJcc3o7kAYzk-vWXerpXT9_Vs6_17H09_VHP9g4_Hhzuv51_fzM_-PRr__P824fLzuYo3lhbd-15Ju4YJvqeW4RUijzktAqkDBRMZCTLcD9FWmQ-h04ICwjmc68QheS04GkK2LSoKpHyEp6p7IqzvPNsp7zqDKqyLL20EKIqOK9olvlpzmjOKpllLM39a869Ru_kebNpTXJcW17_bw43nDPd6LrpLE9e7Ja3IIKfZLfN_fEbTxi7NA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Student-t+VAE%E3%81%AB%E3%82%88%E3%82%8B%E3%83%AD%E3%83%90%E3%82%B9%E3%83%88%E7%A2%BA%E7%8E%87%E5%AF%86%E5%BA%A6%E6%8E%A8%E5%AE%9A&rft.jtitle=%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E8%AA%8C&rft.au=%E9%AB%98%E6%A9%8B%2C+%E5%A4%A7%E5%BF%97&rft.au=%E5%B1%B1%E4%B8%AD%2C+%E5%8F%8B%E8%B2%B4&rft.au=%E5%B2%A9%E7%94%B0%2C+%E5%85%B7%E6%B2%BB&rft.au=%E9%B9%BF%E5%B3%B6%2C+%E4%B9%85%E5%97%A3&rft.date=2021-05-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=36&rft.issue=3&rft.spage=A-KA4_1&rft.epage=9&rft_id=info:doi/10.1527%2Ftjsai.36-3_A-KA4&rft.externalDocID=article_tjsai_36_3_36_36_3_A_KA4_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon