Helical Inversion of Peptide‐based Supramolecular Co2+ Complexes
Herein, we report the helical inversion of supramolecular polymeric complexes of Co2+ containing a peptide‐based ligand comprising one alanine and three glycine moieties and an achiral terpyridine group. The helicity of the peptide‐based supramolecular polymer is controlled via strain‐induced chiral...
Saved in:
Published in | Bulletin of the Korean Chemical Society Vol. 39; no. 8; pp. 988 - 994 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley‐VCH Verlag GmbH & Co. KGaA
01.08.2018
대한화학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-5949 0253-2964 1229-5949 |
DOI | 10.1002/bkcs.11540 |
Cover
Summary: | Herein, we report the helical inversion of supramolecular polymeric complexes of Co2+ containing a peptide‐based ligand comprising one alanine and three glycine moieties and an achiral terpyridine group. The helicity of the peptide‐based supramolecular polymer is controlled via strain‐induced chirality at different stoichiometric ligand/Co2+ ratios. The supramolecular polymer S‐1 adopts octahedral geometry with right‐handed helicity (P‐type) in the presence of <0.7 equiv of Co2+. In contrast, it adopts coexisting octahedral and square‐pyramidal geometries in the presence of 1.0 equiv of Co2+ and presents left‐handed helicity (M‐type). The helicities of the supramolecular polymer R‐1 with Co2+, prepared using the chirally opposite ligand, were completely opposite to those of S‐1. Furthermore, the circular dichroism intensities of supramolecular polymers S‐1 and R‐1 in the presence of Co2+ were 900–1500 times higher than those of free S‐1 and R‐1. In addition, the helical inversion was completely reversible and controllable by the addition of more Co2+ or ligand. |
---|---|
Bibliography: | https://onlinelibrary.wiley.com/doi/abs/10.1002/bkcs.11540 |
ISSN: | 1229-5949 0253-2964 1229-5949 |
DOI: | 10.1002/bkcs.11540 |