ストレス誘発細胞老化は炎症・がん細胞増殖促進に関与する
細胞老化は細胞増殖を停止させることで,がん抑制機構として長らく考えられてきた.しかしながら近年では,細胞老化はがん抑制の他に,発生,組織の老化,損傷修復など,様々な機能があることがわかってきた.驚くべきことに,p53変異,欠失などのある一定の条件下では,細胞老化は分泌因子を介してがん促進に寄与することもわかってきた.老化細胞は炎症性サイトカイン,ケモカイン,増殖因子,マトリックスリモデリング因子などの分泌(senescence-associated secretory phenotype; SASP)を亢進させ,周辺環境を変化させる.そのようなSASP因子は,細胞老化が多面的機能を持つ要因とな...
Saved in:
Published in | Thermal Medicine Vol. 35; no. 4; pp. 41 - 58 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
日本ハイパーサーミア学会
15.12.2019
|
Online Access | Get full text |
ISSN | 1882-2576 1882-3750 |
DOI | 10.3191/thermalmed.35.41 |
Cover
Abstract | 細胞老化は細胞増殖を停止させることで,がん抑制機構として長らく考えられてきた.しかしながら近年では,細胞老化はがん抑制の他に,発生,組織の老化,損傷修復など,様々な機能があることがわかってきた.驚くべきことに,p53変異,欠失などのある一定の条件下では,細胞老化は分泌因子を介してがん促進に寄与することもわかってきた.老化細胞は炎症性サイトカイン,ケモカイン,増殖因子,マトリックスリモデリング因子などの分泌(senescence-associated secretory phenotype; SASP)を亢進させ,周辺環境を変化させる.そのようなSASP因子は,細胞老化が多面的機能を持つ要因となっている.本総説では,慢性炎症,がん促進に着目した,細胞老化に関する分子,細胞レベルで得られている知見を紹介する. |
---|---|
AbstractList | 細胞老化は細胞増殖を停止させることで,がん抑制機構として長らく考えられてきた.しかしながら近年では,細胞老化はがん抑制の他に,発生,組織の老化,損傷修復など,様々な機能があることがわかってきた.驚くべきことに,p53変異,欠失などのある一定の条件下では,細胞老化は分泌因子を介してがん促進に寄与することもわかってきた.老化細胞は炎症性サイトカイン,ケモカイン,増殖因子,マトリックスリモデリング因子などの分泌(senescence-associated secretory phenotype; SASP)を亢進させ,周辺環境を変化させる.そのようなSASP因子は,細胞老化が多面的機能を持つ要因となっている.本総説では,慢性炎症,がん促進に着目した,細胞老化に関する分子,細胞レベルで得られている知見を紹介する. |
Author | 増永, 慎一郎 坂口, 義彦 小橋川, 新子 森, 英一朗 |
Author_xml | – sequence: 1 fullname: 小橋川, 新子 organization: 京都大学複合原子力科学研究所,放射線生命科学研究部門,粒子線生物学研究分野 – sequence: 1 fullname: 坂口, 義彦 organization: 奈良県立医科大学,医学部,未来基礎医学 – sequence: 1 fullname: 増永, 慎一郎 organization: 京都大学複合原子力科学研究所,放射線生命科学研究部門,粒子線生物学研究分野 – sequence: 1 fullname: 森, 英一朗 organization: 奈良県立医科大学,医学部,未来基礎医学 |
BookMark | eNpFkD1Lw1AYhS9Swba6-ydS70fe3GSU4hcURNA53Obe2Ia2StLFrUkGBUsXobWLQ0cVFXHwY_DH3Na0_0KxRZdzHnjgDKeAcq2TlkJoneASIw7ZaNdU2BSNppIlBiWTLKE8sW1qMA44t2AK3FpBhSgKMLYIx2YeHejkTacXOr3_gentdTZ8z16epunNtBNPun0dP2ZJLxuc6_RDx12dXM3tZDT4euiPP9NZ51nHd7P-aPza0_FQJ5eraNkXjUitLbqIjra3Dsu7RmV_Z6-8WTECSjk2mOMzZmEJJvcFUJ_LKpXMxgpU1WQSg-Sc28xzQDo-x1UQlFmmBCrBpx5QVkTl-W4QtcWxck_DelOEZ64I23Wvodz_Q1wGrvkb5M96NRG6gWDfVd170w |
ContentType | Journal Article |
Copyright | 2019, 日本ハイパーサーミア学会 |
Copyright_xml | – notice: 2019, 日本ハイパーサーミア学会 |
DOI | 10.3191/thermalmed.35.41 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1882-3750 |
EndPage | 58 |
ExternalDocumentID | article_thermalmed_35_4_35_41_article_char_ja |
GroupedDBID | 123 29Q 2WC 53G ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK E3Z JMI JSF JSH KQ8 MOJWN OK1 RJT RNS RZJ TR2 |
ID | FETCH-LOGICAL-j2270-39f3360d547fa52f7db2d380e5eb43d05d77783c95d9f70b5a2364d52d5f2c523 |
ISSN | 1882-2576 |
IngestDate | Wed Sep 03 06:29:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2270-39f3360d547fa52f7db2d380e5eb43d05d77783c95d9f70b5a2364d52d5f2c523 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/thermalmed/35/4/35_41/_article/-char/ja |
PageCount | 18 |
ParticipantIDs | jstage_primary_article_thermalmed_35_4_35_41_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2019/12/15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019/12/15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Thermal Medicine |
PublicationTitleAlternate | Thermal Med. |
PublicationYear | 2019 |
Publisher | 日本ハイパーサーミア学会 |
Publisher_xml | – name: 日本ハイパーサーミア学会 |
References | 42) Mitra J., Dai C.Y., Somasundaram K., El-Deiry W.S., Satyamoorthy K., Herlyn M., Enders G.H.: Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Mol Cell Biol, 19: 3916-3928, 1999. 99) Kong E.Y., Cheng S.H., Yu K.N.: Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? J Radiat Res, 59: 129-140, 2018. 20) Rodier F., Campisi J.: Four faces of cellular senescence. J Cell Biol, 192: 547-556, 2011. 44) Sage J., Miller A.L., Perez-Mancera P.A., Wysocki J.M., Jacks T.: Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature, 424: 223-228, 2003. 118) Shapiro L., Dinarello C.A.: Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci USA, 92: 12230-12234, 1995. 34) Munoz-Espin D., Serrano M.: Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 15: 482-496, 2014. 80) Furusawa Y., Yamanouchi Y., Iizumi T., Zhao Q.L., Mitsuhashi Y., Morita A., Enomoto A., Tabuchi Y., Kondo T.: Checkpoint kinase 2 is dispensable for regulation of the p53 response but is required for G2/M arrest and cell survival in cells with p53 defects under heat stress. Apoptosis, 22: 1225-1234, 2017. 82) Jacob P., Hirt H., Bendahmane A.: The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J, 15: 405-414, 2017. 27) Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M.: Cellular senescence in aging primates. Science, 311: 1257, 2006. 29) Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M.: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479: 232-236, 2011. 14) Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W.: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88: 593-602, 1997. 2) Blander G., de Oliveira R.M., Conboy C.M., Haigis M., Guarente L.: Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem, 278: 38966-38969, 2003. 95) Fu J., Yuan D., Xiao L., Tu W., Dong C., Liu W., Shao C.: The crosstalk between alpha-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kappaB signaling pathways. Mutat Res, 783: 1-8, 2016. 127) Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A.: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460: 392-395, 2009. 75) Yamamori T., Yasui H., Yamazumi M., Wada Y., Nakamura Y., Nakamura H., Inanami O.: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med, 53: 260-270, 2012. 121) Kefaloyianni E., Gaitanaki C., Beis I.: ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18: 2238-2251, 2006. 18) Ramsey M.R., Sharpless N.E.: ROS as a tumour suppressor? Nat Cell Biol, 8: 1213-1215, 2006. 48) Weber J.D., Jeffers J.R., Rehg J.E., Randle D.H., Lozano G., Roussel M.F., Sherr C.J., Zambetti G.P.: p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev, 14: 2358-2365, 2000. 124) Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., O’Hara S.P., LaRusso N.F., Miller J.D., Roos C.M., Verzosa G.C., LeBrasseur N.K., Wren J.D., Farr J.N., Khosla S., Stout M.B., McGowan S.J., Fuhrmann-Stroissnigg H., Gurkar A.U., Zhao J., Colangelo D., Dorronsoro A., Ling Y.Y., Barghouthy A.S., Navarro D.C., Sano T., Robbins P.D., Niedernhofer L.J., Kirkland J.L.: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14: 644-658, 2015. 102) Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., Curran S.C., Davalos A.R., Wilson-Edell K.A., Liu S., Limbad C., Demaria M., Li P., Hubbard G.B., Ikeno Y., Javors M., Desprez P.Y., Benz C.C., Kapahi P., Nelson P.S., Campisi J.: MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol, 17: 1049-1061, 2015. 72) Suzuki K., Mori I., Nakayama Y., Miyakoda M., Kodama S., Watanabe M.: Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res, 155: 248-253, 2001. 89) Yaglom J.A., Gabai V.L., Sherman M.Y.: High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res, 67: 2373-2381, 2007. 109) Gilbert L.A., Hemann M.T.: DNA damage-mediated induction of a chemoresistant niche. Cell, 143: 355-366, 2010. 90) Perez F.P., Zhou X., Morisaki J., Jurivich D.: Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp Gerontol, 43: 307-316, 2008. 115) Vanpouille-Box C., Demaria S., Formenti S.C., Galluzzi L.: Cytosolic DNA sensing in organismal tumor control. Cancer Cell, 34: 361-378, 2018. 54) Wajapeyee N., Serra R.W., Zhu X., Mahalingam M., Green M.R.: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 132: 363-374, 2008. 100) Malaquin N., Martinez A., Rodier F.: Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol, 82: 39-49, 2016. 45) Dirac A.M., Bernards R.: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem, 278: 11731-11734, 2003. 51) Baker D.J., Sedivy J.M.: Probing the depths of cellular senescence. J Cell Biol, 202: 11-13, 2013. 73) Kobashigawa S., Kashino G., Suzuki K., Yamashita S., Mori H.: Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells. Radiat Res, 183: 455-464, 2015. 93) Rattan S.I., Ali R.E.: Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci, 1100: 424-430, 2007. 107) Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A.: Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res, 72: 2251-2261, 2012. 1) Hayflick L., Moorhead P.S.: The serial cultivation of human diploid cell strains. Exp Cell Res, 25: 585-621, 1961. 60) Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., Wallace D.C., Rabinovitch P.S.: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science, 308: 1909-1911, 2005. 112) Takahashi A., Loo T.M., Okada R., Kamachi F., Watanabe Y., Wakita M., Watanabe S., Kawamoto S., Miyata K., Barber G.N., Ohtani N., Hara E.: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun, 9: 1249, 2018. 25) Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., Peacocke M., Campisi J.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 92: 9363-9367, 1995. 70) Jun J.I., Lau L.F.: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 12: 676-685, 2010. 59) Linford N.J., Schriner S.E., Rabinovitch P.S.: Oxidative damage and aging: spotlight on mitochondria. Cancer Res, 66: 2497-2499, 2006. 114) Lan Y.Y., Heather J.M., Eisenhaure T., Garris C.S., Lieb D., Raychowdhury R., Hacohen N.: Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell, 18: e12901, 2019. 101) Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitah S.A., Zender L., Gil J.: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol, 15: 978-990, 2013. 30) Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., A. Saltness R., Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., van Deursen J.M.: Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530: 184-189, 2016. 56) Chen Q.M., Bartholomew J.C., Campisi J., Acosta M., Reagan J.D., Ames B.N.: Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J, 332: 43-50, 1998. 126) Herranz N., Gallage S., Mellone M., Wuestefeld T., Klotz S., Hanley C.J., Raguz S., Acosta J.C., Innes A.J., Banito A., Georgilis A., Montoya A., Wolter K., Dharmalingam G., Faull P., Carroll T., Martinez-Barbera J.P., Cutillas P., Reisinger F., Heikenwalder M., Miller R.A., Withers D., Zender L., Thomas G.J., Gil J.: mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol, 17: 1205-1217, 2015. 104) Hubackova S., Krejcikova K., Bartek J., Hodny Z.: IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging (Albany NY), 4: 932-951, 2012. 91) Kim G., Meriin A.B., Gabai V.L., Christians E., Benjamin I., Wilson A., Wolozin B., Sherman M.Y.: The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of se |
References_xml | – reference: 13) Acosta J.C., O’Loghlen A., Banito A., Guijarro M.V., Augert A., Raguz S., Fumagalli M., Da Costa M., Brown C., Popov N., Takatsu Y., Melamed J., d’Adda di Fagagna F., Bernard D., Hernando E., Gil J.: Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 133: 1006-1018, 2008. – reference: 93) Rattan S.I., Ali R.E.: Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci, 1100: 424-430, 2007. – reference: 120) Vermeulen L., De Wilde G., Van Damme P., Vanden Berghe W., Haegeman G.: Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J, 22: 1313-1324, 2003. – reference: 15) Kobashigawa S., Kashino G., Mori H., Watanabe M.: Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells. Mech Ageing Dev, 146-148: 65-71, 2015. – reference: 23) Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J., Keyes W.M.: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155: 1119-1130, 2013. – reference: 84) Alekseenko L.L., Zemelko V.I., Domnina A.P., Lyublinskaya O.G., Zenin V.V., Pugovkina N.A., Kozhukharova I.V., Borodkina A.V., Grinchuk T.M., Fridlyanskaya, II, Nikolsky N.N.: Sublethal heat shock induces premature senescence rather than apoptosis in human mesenchymal stem cells. Cell Stress Chaperones, 19: 355-366, 2014. – reference: 96) Pahan K., Liu X., McKinney M.J., Wood C., Sheikh F.G., Raymond J.R.: Expression of a dominant-negative mutant of p21(ras) inhibits induction of nitric oxide synthase and activation of nuclear factor-kappaB in primary astrocytes. J Neurochem, 74: 2288-2295, 2000. – reference: 9) Barnes R.P., Fouquerel E., Opresko P.L.: The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev, 177: 37-45, 2019. – reference: 87) Johmura Y., Shimada M., Misaki T., Naiki-Ito A., Miyoshi H., Motoyama N., Ohtani N., Hara E., Nakamura M., Morita A., Takahashi S., Nakanishi M.: Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell, 55: 73-84, 2014. – reference: 70) Jun J.I., Lau L.F.: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 12: 676-685, 2010. – reference: 34) Munoz-Espin D., Serrano M.: Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 15: 482-496, 2014. – reference: 114) Lan Y.Y., Heather J.M., Eisenhaure T., Garris C.S., Lieb D., Raychowdhury R., Hacohen N.: Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell, 18: e12901, 2019. – reference: 102) Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., Curran S.C., Davalos A.R., Wilson-Edell K.A., Liu S., Limbad C., Demaria M., Li P., Hubbard G.B., Ikeno Y., Javors M., Desprez P.Y., Benz C.C., Kapahi P., Nelson P.S., Campisi J.: MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol, 17: 1049-1061, 2015. – reference: 113) Nassour J., Radford R., Correia A., Fuste J.M., Schoell B., Jauch A., Shaw R.J., Karlseder J.: Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 565: 659-663, 2019. – reference: 126) Herranz N., Gallage S., Mellone M., Wuestefeld T., Klotz S., Hanley C.J., Raguz S., Acosta J.C., Innes A.J., Banito A., Georgilis A., Montoya A., Wolter K., Dharmalingam G., Faull P., Carroll T., Martinez-Barbera J.P., Cutillas P., Reisinger F., Heikenwalder M., Miller R.A., Withers D., Zender L., Thomas G.J., Gil J.: mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol, 17: 1205-1217, 2015. – reference: 30) Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., A. Saltness R., Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., van Deursen J.M.: Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530: 184-189, 2016. – reference: 117) Cuenda A., Rouse J., Doza Y.N., Meier R., Cohen P., Gallagher T.F., Young P.R., Lee J.C.: SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett, 364: 229-233, 1995. – reference: 98) Tamari Y., Kashino G., Mori H.: Acquisition of radioresistance by IL-6 treatment is caused by suppression of oxidative stress derived from mitochondria after gamma-irradiation. J Radiat Res, 58: 412-420, 2017. – reference: 79) Petrova N.V., Velichko A.K., Razin S.V., Kantidze O.L.: Early S-phase cell hypersensitivity to heat stress. Cell Cycle, 15: 337-344, 2016. – reference: 51) Baker D.J., Sedivy J.M.: Probing the depths of cellular senescence. J Cell Biol, 202: 11-13, 2013. – reference: 29) Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M.: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479: 232-236, 2011. – reference: 73) Kobashigawa S., Kashino G., Suzuki K., Yamashita S., Mori H.: Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells. Radiat Res, 183: 455-464, 2015. – reference: 37) Hara E., Smith R., Parry D., Tahara H., Stone S., Peters G.: Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol, 16: 859-867, 1996. – reference: 11) Parrinello S., Samper E., Krtolica A., Goldstein J., Melov S., Campisi J.: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol, 5: 741-747, 2003. – reference: 20) Rodier F., Campisi J.: Four faces of cellular senescence. J Cell Biol, 192: 547-556, 2011. – reference: 42) Mitra J., Dai C.Y., Somasundaram K., El-Deiry W.S., Satyamoorthy K., Herlyn M., Enders G.H.: Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Mol Cell Biol, 19: 3916-3928, 1999. – reference: 7) d’Adda di Fagagna F., Reaper P.M., Clay-Farrace L., Fiegler H., Carr P., Von Zglinicki T., Saretzki G., Carter N.P., Jackson S.P.: A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426: 194-198, 2003. – reference: 28) Wang C., Jurk D., Maddick M., Nelson G., Martin-Ruiz C., von Zglinicki T.: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 8: 311-323, 2009. – reference: 75) Yamamori T., Yasui H., Yamazumi M., Wada Y., Nakamura Y., Nakamura H., Inanami O.: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med, 53: 260-270, 2012. – reference: 21) Pribluda A., Elyada E., Wiener Z., Hamza H., Goldstein R.E., Biton M., Burstain I., Morgenstern Y., Brachya G., Billauer H., Biton S., Snir-Alkalay I., Vucic D., Schlereth K., Mernberger M., Stiewe T., Oren M., Alitalo K., Pikarsky E., Ben-Neriah Y.: A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell, 24: 242-256, 2013. – reference: 78) Takahashi A., Mori E., Somakos G.I., Ohnishi K., Ohnishi T.: Heat induces gammaH2AX foci formation in mammalian cells. Mutat Res, 656: 88-92, 2008. – reference: 32) Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.M., Vijg J., Van Steeg H., Dolle M.E., Hoeijmakers J.H., de Bruin A., Hara E., Campisi J.: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell, 31: 722-733, 2014. – reference: 53) Kortlever R.M., Higgins P.J., Bernards R.: Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol, 8: 877-884, 2006. – reference: 49) Tago K., Chiocca S., Sherr C.J.: Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA, 102: 7689-7694, 2005. – reference: 19) Bartek J., Bartkova J., Lukas J.: DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene, 26: 7773-7779, 2007. – reference: 31) Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W.: Senescence of activated stellate cells limits liver fibrosis. Cell, 134: 657-667, 2008. – reference: 88) Suzuki M., Yamauchi M., Oka Y., Suzuki K., Yamashita S.: Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation. Int J Radiat Oncol Biol Phys, 83: e241-250, 2012. – reference: 115) Vanpouille-Box C., Demaria S., Formenti S.C., Galluzzi L.: Cytosolic DNA sensing in organismal tumor control. Cancer Cell, 34: 361-378, 2018. – reference: 83) Gao C.Q., Zhao Y.L., Li H.C., Sui W.G., Yan H.C., Wang X.Q.: Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. J Zhejiang Univ Sci B, 16: 549-559, 2015. – reference: 112) Takahashi A., Loo T.M., Okada R., Kamachi F., Watanabe Y., Wakita M., Watanabe S., Kawamoto S., Miyata K., Barber G.N., Ohtani N., Hara E.: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun, 9: 1249, 2018. – reference: 77) Takahashi A., Matsumoto H., Nagayama K., Kitano M., Hirose S., Tanaka H., Mori E., Yamakawa N., Yasumoto J., Yuki K., Ohnishi K., Ohnishi T.: Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res, 64: 8839-8845, 2004. – reference: 80) Furusawa Y., Yamanouchi Y., Iizumi T., Zhao Q.L., Mitsuhashi Y., Morita A., Enomoto A., Tabuchi Y., Kondo T.: Checkpoint kinase 2 is dispensable for regulation of the p53 response but is required for G2/M arrest and cell survival in cells with p53 defects under heat stress. Apoptosis, 22: 1225-1234, 2017. – reference: 81) Gomez-Pastor R., Burchfiel E.T., Thiele D.J.: Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol, 19: 4-19, 2018. – reference: 90) Perez F.P., Zhou X., Morisaki J., Jurivich D.: Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp Gerontol, 43: 307-316, 2008. – reference: 63) Rai P., Young J.J., Burton D.G., Giribaldi M.G., Onder T.T., Weinberg R.A.: Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene, 30: 1489-1496, 2011. – reference: 76) Correia-Melo C., Marques F.D., Anderson R., Hewitt G., Hewitt R., Cole J., Carroll B.M., Miwa S., Birch J., Merz A., Rushton M.D., Charles M., Jurk D., Tait S.W., Czapiewski R., Greaves L., Nelson G., Bohlooly Y.M., Rodriguez-Cuenca S., Vidal-Puig A., Mann D., Saretzki G., Quarato G., Green D.R., Adams P.D., von Zglinicki T., Korolchuk V.I., Passos J.F.: Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J, 35: 724-742, 2016. – reference: 55) Kim K.S., Seu Y.B., Baek S.H., Kim M.J., Kim K.J., Kim J.H., Kim J.R.: Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell, 18: 4543-4552, 2007. – reference: 105) Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Raza S.R., Freund A., Campeau E., Davalos A.R., Campisi J.: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol, 11: 973-979, 2009. – reference: 71) Suzuki M., Suzuki K., Kodama S., Watanabe M.: Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest. Biochem Biophys Res Commun, 340: 145-150, 2006. – reference: 50) Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., Nelson P.S., Desprez P.Y., Campisi J.: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6: 2853-2868, 2008. – reference: 67) Macip S., Igarashi M., Berggren P., Yu J., Lee S.W., Aaronson S.A.: Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol, 23: 8576-8585, 2003. – reference: 33) Kabacik S., Horvath S., Cohen H., Raj K.: Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging (Albany NY), 10: 2800-2815, 2018. – reference: 57) von Zglinicki T., Saretzki G., Docke W., Lotze C.: Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res, 220: 186-193, 1995. – reference: 107) Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A.: Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res, 72: 2251-2261, 2012. – reference: 92) Gutsmann-Conrad A., Heydari A.R., You S., Richardson A.: The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp Cell Res, 241: 404-413, 1998. – reference: 16) Toussaint O., Medrano E.E., von Zglinicki T.: Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol, 35: 927-945, 2000. – reference: 54) Wajapeyee N., Serra R.W., Zhu X., Mahalingam M., Green M.R.: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 132: 363-374, 2008. – reference: 116) Beyaert R., Cuenda A., Vanden Berghe W., Plaisance S., Lee J.C., Haegeman G., Cohen P., Fiers W.: The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 15: 1914-1923, 1996. – reference: 74) Kobashigawa S., Suzuki K., Yamashita S.: Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun, 414: 795-800, 2011. – reference: 94) Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K., Morita H., Hattori M., Honda K., Ishikawa Y., Hara E., Ohtani N.: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499: 97-101, 2013. – reference: 101) Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitah S.A., Zender L., Gil J.: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol, 15: 978-990, 2013. – reference: 10) Loo D.T., Fuquay J.I., Rawson C.L., Barnes D.W.: Extended culture of mouse embryo cells without senescence: inhibition by serum. Science, 236: 200-202, 1987. – reference: 14) Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W.: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88: 593-602, 1997. – reference: 22) Munoz-Espin D., Canamero M., Maraver A., Gomez-Lopez G., Contreras J., Murillo-Cuesta S., Rodriguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M., Serrano M.: Programmed cell senescence during mammalian embryonic development. Cell, 155: 1104-1118, 2013. – reference: 100) Malaquin N., Martinez A., Rodier F.: Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol, 82: 39-49, 2016. – reference: 61) Chen Q., Fischer A., Reagan J.D., Yan L.J., Ames B.N.: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA, 92: 4337-4341, 1995. – reference: 45) Dirac A.M., Bernards R.: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem, 278: 11731-11734, 2003. – reference: 47) Kuo M.L., den Besten W., Thomas M.C., Sherr C.J.: Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle, 7: 3378-3387, 2008. – reference: 124) Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., O’Hara S.P., LaRusso N.F., Miller J.D., Roos C.M., Verzosa G.C., LeBrasseur N.K., Wren J.D., Farr J.N., Khosla S., Stout M.B., McGowan S.J., Fuhrmann-Stroissnigg H., Gurkar A.U., Zhao J., Colangelo D., Dorronsoro A., Ling Y.Y., Barghouthy A.S., Navarro D.C., Sano T., Robbins P.D., Niedernhofer L.J., Kirkland J.L.: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14: 644-658, 2015. – reference: 39) Ohtani N., Zebedee Z., Huot T.J., Stinson J.A., Sugimoto M., Ohashi Y., Sharrocks A.D., Peters G., Hara E.: Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature, 409: 1067-1070, 2001. – reference: 62) Lu T., Finkel T.: Free radicals and senescence. Exp Cell Res, 314: 1918-1922, 2008. – reference: 64) Saretzki G., Murphy M.P., von Zglinicki T.: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2: 141-143, 2003. – reference: 68) Passos J.F., Nelson G., Wang C., Richter T., Simillion C., Proctor C.J., Miwa S., Olijslagers S., Hallinan J., Wipat A., Saretzki G., Rudolph K.L., Kirkwood T.B., von Zglinicki T.: Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol, 6: 347, 2010. – reference: 111) Gluck S., Guey B., Gulen M.F., Wolter K., Kang T.W., Schmacke N.A., Bridgeman A., Rehwinkel J., Zender L., Ablasser A.: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol, 19: 1061-1070, 2017. – reference: 41) Beausejour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J.: Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J, 22: 4212-4222, 2003. – reference: 60) Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., Wallace D.C., Rabinovitch P.S.: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science, 308: 1909-1911, 2005. – reference: 104) Hubackova S., Krejcikova K., Bartek J., Hodny Z.: IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging (Albany NY), 4: 932-951, 2012. – reference: 122) Borodkina A.V., Deryabin P.I., Giukova A.A., Nikolsky N.N.: “Social life” of senescent cells: What is SASP and why study it? Acta Naturae, 10: 4-14, 2018. – reference: 46) Sherr C.J.: Divorcing ARF and p53: an unsettled case. Nat Rev Cancer, 6: 663-673, 2006. – reference: 121) Kefaloyianni E., Gaitanaki C., Beis I.: ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18: 2238-2251, 2006. – reference: 5) Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S.: The essence of senescence. Genes Dev, 24: 2463-2479, 2010. – reference: 25) Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., Peacocke M., Campisi J.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 92: 9363-9367, 1995. – reference: 86) Velichko A.K., Petrova N.V., Razin S.V., Kantidze O.L.: Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res, 43: 6309-6320, 2015. – reference: 103) Orjalo A.V., Bhaumik D., Gengler B.K., Scott G.K., Campisi J.: Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA, 106: 17031-17036, 2009. – reference: 119) Alspach E., Flanagan K.C., Luo X., Ruhland M.K., Huang H., Pazolli E., Donlin M.J., Marsh T., Piwnica-Worms D., Monahan J., Novack D.V., McAllister S.S., Stewart S.A.: p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov, 4: 716-729, 2014. – reference: 118) Shapiro L., Dinarello C.A.: Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci USA, 92: 12230-12234, 1995. – reference: 43) Takeuchi S., Takahashi A., Motoi N., Yoshimoto S., Tajima T., Yamakoshi K., Hirao A., Yanagi S., Fukami K., Ishikawa Y., Sone S., Hara E., Ohtani N.: Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer Res, 70: 9381-9390, 2010. – reference: 35) Sherr C.J., Roberts J.M.: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13: 1501-1512, 1999. – reference: 82) Jacob P., Hirt H., Bendahmane A.: The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J, 15: 405-414, 2017. – reference: 2) Blander G., de Oliveira R.M., Conboy C.M., Haigis M., Guarente L.: Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem, 278: 38966-38969, 2003. – reference: 109) Gilbert L.A., Hemann M.T.: DNA damage-mediated induction of a chemoresistant niche. Cell, 143: 355-366, 2010. – reference: 24) Yamakoshi K., Takahashi A., Hirota F., Nakayama R., Ishimaru N., Kubo Y., Mann D.J., Ohmura M., Hirao A., Saya H., Arase S., Hayashi Y., Nakao K., Matsumoto M., Ohtani N., Hara E.: Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J Cell Biol, 186: 393-407, 2009. – reference: 97) Anrather J., Csizmadia V., Soares M.P., Winkler H.: Regulation of NF-kappaB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Czeta in primary endothelial cells. J Biol Chem, 274: 13594-13603, 1999. – reference: 6) Vaziri H., Benchimol S.: Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol, 8: 279-282, 1998. – reference: 69) Takahashi A., Ohtani N., Yamakoshi K., Iida S., Tahara H., Nakayama K., Nakayama K.I., Ide T., Saya H., Hara E.: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol, 8: 1291-1297, 2006. – reference: 38) Alcorta D.A., Xiong Y., Phelps D., Hannon G., Beach D., Barrett J.C.: Involvement of the cyclin-dependent kinase inhibitor p16(INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA, 93: 13742-13747, 1996. – reference: 89) Yaglom J.A., Gabai V.L., Sherman M.Y.: High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res, 67: 2373-2381, 2007. – reference: 66) Macip S., Igarashi M., Fang L., Chen A., Pan Z.Q., Lee S.W., Aaronson S.A.: Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J, 21: 2180-2188, 2002. – reference: 95) Fu J., Yuan D., Xiao L., Tu W., Dong C., Liu W., Shao C.: The crosstalk between alpha-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kappaB signaling pathways. Mutat Res, 783: 1-8, 2016. – reference: 48) Weber J.D., Jeffers J.R., Rehg J.E., Randle D.H., Lozano G., Roussel M.F., Sherr C.J., Zambetti G.P.: p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev, 14: 2358-2365, 2000. – reference: 1) Hayflick L., Moorhead P.S.: The serial cultivation of human diploid cell strains. Exp Cell Res, 25: 585-621, 1961. – reference: 27) Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M.: Cellular senescence in aging primates. Science, 311: 1257, 2006. – reference: 58) Kashino G., Kodama S., Nakayama Y., Suzuki K., Fukase K., Goto M., Watanabe M.: Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med, 35: 438-443, 2003. – reference: 108) Freund A., Patil C.K., Campisi J.: p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J, 30: 1536-1548, 2011. – reference: 8) de Lange T.: How telomeres solve the end-protection problem. Science, 326: 948-952, 2009. – reference: 72) Suzuki K., Mori I., Nakayama Y., Miyakoda M., Kodama S., Watanabe M.: Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res, 155: 248-253, 2001. – reference: 12) Takahashi A., Imai Y., Yamakoshi K., Kuninaka S., Ohtani N., Yoshimoto S., Hori S., Tachibana M., Anderton E., Takeuchi T., Shinkai Y., Peters G., Saya H., Hara E.: DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell, 45: 123-131, 2012. – reference: 91) Kim G., Meriin A.B., Gabai V.L., Christians E., Benjamin I., Wilson A., Wolozin B., Sherman M.Y.: The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell, 11: 617-627, 2012. – reference: 44) Sage J., Miller A.L., Perez-Mancera P.A., Wysocki J.M., Jacks T.: Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature, 424: 223-228, 2003. – reference: 52) Narita M., Narita M., Krizhanovsky V., Nunez S., Chicas A., Hearn S.A., Myers M.P., Lowe S.W.: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell, 126: 503-514, 2006. – reference: 36) el-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B.: WAF1, a potential mediator of p53 tumor suppression. Cell, 75: 817-825, 1993. – reference: 56) Chen Q.M., Bartholomew J.C., Campisi J., Acosta M., Reagan J.D., Ames B.N.: Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J, 332: 43-50, 1998. – reference: 123) de Magalhaes J.P., Passos J.F.: Stress, cell senescence and organismal ageing. Mech Ageing Dev, 170: 2-9, 2018. – reference: 17) Kuilman T., Michaloglou C., Vredeveld L.C., Douma S., van Doorn R., Desmet C.J., Aarden L.A., Mooi W.J., Peeper D.S.: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133: 1019-1031, 2008. – reference: 85) Alekseenko L.L., Shilina M.A., Lyublinskaya O.G., Kornienko J.S., Anatskaya O.V., Vinogradov A.E., Grinchuk T.M., Fridlyanskaya, II, Nikolsky N.N.: Quiescent human mesenchymal stem cells are more resistant to heat stress than cycling cells. Stem Cells Int, 2018: 3753547, 2018. – reference: 110) Dou Z., Ghosh K., Vizioli M.G., Zhu J., Sen P., Wangensteen K.J., Simithy J., Lan Y., Lin Y., Zhou Z., Capell B.C., Xu C., Xu M., Kieckhaefer J.E., Jiang T., Shoshkes-Carmel M., Tanim K., Barber G.N., Seykora J.T., Millar S.E., Kaestner K.H., Garcia B.A., Adams P.D., Berger S.L.: Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 550: 402-406, 2017. – reference: 3) Hagen T.M., Yowe D.L., Bartholomew J.C., Wehr C.M., Do K.L., Park J.Y., Ames B.N.: Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA, 94: 3064-3069, 1997. – reference: 18) Ramsey M.R., Sharpless N.E.: ROS as a tumour suppressor? Nat Cell Biol, 8: 1213-1215, 2006. – reference: 99) Kong E.Y., Cheng S.H., Yu K.N.: Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? J Radiat Res, 59: 129-140, 2018. – reference: 125) Chang J., Wang Y., Shao L., Laberge R.-M., Demaria M., Campisi J., Janakiraman K., Sharpless N.E., Ding S., Feng W., Luo Y., Wang X., Aykin-Burns N., Krager K., Ponnappan U., Hauer-Jensen M., Meng A., Zhou D.: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med, 22: 78-83, 2016. – reference: 106) Rossiello F., Herbig U., Longhese M.P., Fumagalli M., d’Adda di Fagagna F.: Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev, 26: 89-95, 2014. – reference: 59) Linford N.J., Schriner S.E., Rabinovitch P.S.: Oxidative damage and aging: spotlight on mitochondria. Cancer Res, 66: 2497-2499, 2006. – reference: 4) Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.-P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E.: Extension of life-span by introduction of telomerase into normal human cells. Science, 279: 349-352, 1998. – reference: 127) Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A.: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460: 392-395, 2009. – reference: 26) Krishnamurthy J., Torrice C., Ramsey M.R., Kovalev G.I., Al-Regaiey K., Su L., Sharpless N.E.: Ink4a/Arf expression is a biomarker of aging. J Clin Invest, 114: 1299-1307, 2004. – reference: 65) Polyak K., Xia Y., Zweier J.L., Kinzler K.W., Vogelstein B.: A model for p53-induced apoptosis. Nature, 389: 300-305, 1997. – reference: 40) Herbig U., Jobling W.A., Chen B.P., Chen D.J., Sedivy J.M.: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14: 501-513, 2004. |
SSID | ssj0061704 |
Score | 2.210592 |
Snippet | 細胞老化は細胞増殖を停止させることで,がん抑制機構として長らく考えられてきた.しかしながら近年では,細胞老化はがん抑制の他に,発生,組織の老化,損傷修復など,... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 41 |
Title | ストレス誘発細胞老化は炎症・がん細胞増殖促進に関与する |
URI | https://www.jstage.jst.go.jp/article/thermalmed/35/4/35_41/_article/-char/ja |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Thermal Medicine, 2019/12/15, Vol.35(4), pp.41-58 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1882-3750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061704 issn: 1882-2576 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1882-3750 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061704 issn: 1882-2576 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFB9qBfEifuI3PZjj1tlkMknAS6adpSgIhRZ6G2Z2Zg89VCnbi6fu7kHB0ovQ2ouHHlVUxIMfB_-Yad32r9D3kszutPRgFZYhvPzeR_KSyctsPjzvnmCU5UXgN1KZs0aQFn4jCwRr0LyAl2IW4Cl1uNricTi3GDxc4ksTZ37XVi2tdbPp9rMT95X8i1eBBn7FXbKn8OxIKBAgDf6FJ3gYnn_lYxIzIimJlEnAT7qEnqllSaI1UZAliFIk0piIAhL5mAVgFZuED0EliTmRM0SFhr1JdAvBIEfGhh3SwqmIIoeRlS7FTpLMiabIGIdEx0YyAFqYGytUGtFKV4QUAAAeMdIoNVlKORUyqgfT0MRhWLF7i-vrA1Ap2CBbRiloiQwF7J_FFoVUUINWgnGzRPl1RsCAIqyHFtHM4qFUMQpCKbNEh3X8qHQgD2x28iU31tti-KaoUIB4zBiicB1bvEQTo2YNDxaCG0T9m0zTXChhd6WaXmRQgmju4M7pzBTcVJcOHEU1K6-NGgY_SgHMiIu6itHWWWCIro1dOFnC-aMd2sc0JuzZvtWAZ8-HcR07qI1e9ggyFwfZE_WPj7DwxsYRtmsdDAHbNOPTFd-Rc8tdr0jG0ITxJDCPZlLl4t7CZBkmOGepCEO8guTR_OhvQLwswCwLqUpm1xmgDfePWwAR5DLMp6q1mCY8XLjoXXDzuiltFV7yJoqVy965qmVe8ebL_rdy8KIcvIfEwdvXw53vwy-fDgZvDtZ7-xtbZe_jsL853H5eDn6UvY2y_8rm7u9u__qwtfdzcLj-uey9O9za3fu6WfZ2yv7Lq95iK16YmWu460way5QKiHZUh7HQz3kgOimnHZFnNGfSL3iRBSz3eS6EkKyteK46ws94ipc75JzmvEPbnLJr3uTKk5XiujcFvDKnmZ_RQgS-7Eg_pTzlIs1x_sTaN7wHtjKSp_bMmuRU3rj5f-y3vPPjTnHbm-yurhV3IHTvZneNe_8A7I7Khg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%82%B9%E3%83%88%E3%83%AC%E3%82%B9%E8%AA%98%E7%99%BA%E7%B4%B0%E8%83%9E%E8%80%81%E5%8C%96%E3%81%AF%E7%82%8E%E7%97%87%E3%83%BB%E3%81%8C%E3%82%93%E7%B4%B0%E8%83%9E%E5%A2%97%E6%AE%96%E4%BF%83%E9%80%B2%E3%81%AB%E9%96%A2%E4%B8%8E%E3%81%99%E3%82%8B&rft.jtitle=Thermal+Medicine&rft.au=%E5%B0%8F%E6%A9%8B%E5%B7%9D%2C+%E6%96%B0%E5%AD%90&rft.au=%E5%9D%82%E5%8F%A3%2C+%E7%BE%A9%E5%BD%A6&rft.au=%E5%A2%97%E6%B0%B8%2C+%E6%85%8E%E4%B8%80%E9%83%8E&rft.au=%E6%A3%AE%2C+%E8%8B%B1%E4%B8%80%E6%9C%97&rft.date=2019-12-15&rft.pub=%E6%97%A5%E6%9C%AC%E3%83%8F%E3%82%A4%E3%83%91%E3%83%BC%E3%82%B5%E3%83%BC%E3%83%9F%E3%82%A2%E5%AD%A6%E4%BC%9A&rft.issn=1882-2576&rft.eissn=1882-3750&rft.volume=35&rft.issue=4&rft.spage=41&rft.epage=58&rft_id=info:doi/10.3191%2Fthermalmed.35.41&rft.externalDocID=article_thermalmed_35_4_35_41_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-2576&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-2576&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-2576&client=summon |