ROLバリア:湿生植物の過湿状態の土壌への適応を支えるしくみ

過湿状態の土壌は低酸素になるだけでなく,還元化による有毒物質が増加するため,ほとんどの植物の生育が阻害される.イネやヨシなどの湿生植物は,根に酸素を通気する細胞間隙である通気組織を発達させて過湿土壌に適応している.酸素は拡散によって通気組織内を移動するため,根の基部において,酸素は根端方向に向かうだけでなく,放射方向にも拡散し,放射状酸素放出 (radial oxygen loss, ROL) として酸素が根から失われる.湿生植物の多くは根の基部に放射状酸素放出を抑制する「ROLバリア」を形成し,根端までの酸素の長距離輸送を可能にしている.根端に届けられた酸素は細胞の呼吸に利用されるだけでなく...

Full description

Saved in:
Bibliographic Details
Published in根の研究 Vol. 25; no. 3; pp. 47 - 62
Main Author 塩野, 克宏
Format Journal Article
LanguageJapanese
Published 根研究学会 2016
Subjects
Online AccessGet full text
ISSN0919-2182
1880-7186
DOI10.3117/rootres.25.47

Cover

Abstract 過湿状態の土壌は低酸素になるだけでなく,還元化による有毒物質が増加するため,ほとんどの植物の生育が阻害される.イネやヨシなどの湿生植物は,根に酸素を通気する細胞間隙である通気組織を発達させて過湿土壌に適応している.酸素は拡散によって通気組織内を移動するため,根の基部において,酸素は根端方向に向かうだけでなく,放射方向にも拡散し,放射状酸素放出 (radial oxygen loss, ROL) として酸素が根から失われる.湿生植物の多くは根の基部に放射状酸素放出を抑制する「ROLバリア」を形成し,根端までの酸素の長距離輸送を可能にしている.根端に届けられた酸素は細胞の呼吸に利用されるだけでなく,根から放出され,還元化した土壌を酸化する.これによって,有毒物質を無毒化し,根端を保護する.根の基部では,ROLバリアの主要成分であるスベリンが外皮に蓄積し,酸素の流出を妨げるだけでなく,有毒物質の根への流入も防ぐと考えられている.ROLバリアの形成にはWRKY,AP2,NAC,MYB型転写因子が制御するスベリン生合成遺伝子が関わると予想されている.しかし,これまでROLバリアを形成できない変異体は得られていない.さらに,どのような環境要因がROLバリア形成の引き金になるのかも不明である.今後,湿生植物の過湿土壌への適応を理解するために,ROLバリア形成に関わる遺伝子,植物ホルモンやシグナル伝達系の特定が求められている.
AbstractList 過湿状態の土壌は低酸素になるだけでなく,還元化による有毒物質が増加するため,ほとんどの植物の生育が阻害される.イネやヨシなどの湿生植物は,根に酸素を通気する細胞間隙である通気組織を発達させて過湿土壌に適応している.酸素は拡散によって通気組織内を移動するため,根の基部において,酸素は根端方向に向かうだけでなく,放射方向にも拡散し,放射状酸素放出 (radial oxygen loss, ROL) として酸素が根から失われる.湿生植物の多くは根の基部に放射状酸素放出を抑制する「ROLバリア」を形成し,根端までの酸素の長距離輸送を可能にしている.根端に届けられた酸素は細胞の呼吸に利用されるだけでなく,根から放出され,還元化した土壌を酸化する.これによって,有毒物質を無毒化し,根端を保護する.根の基部では,ROLバリアの主要成分であるスベリンが外皮に蓄積し,酸素の流出を妨げるだけでなく,有毒物質の根への流入も防ぐと考えられている.ROLバリアの形成にはWRKY,AP2,NAC,MYB型転写因子が制御するスベリン生合成遺伝子が関わると予想されている.しかし,これまでROLバリアを形成できない変異体は得られていない.さらに,どのような環境要因がROLバリア形成の引き金になるのかも不明である.今後,湿生植物の過湿土壌への適応を理解するために,ROLバリア形成に関わる遺伝子,植物ホルモンやシグナル伝達系の特定が求められている.
Author 塩野, 克宏
Author_xml – sequence: 1
  fullname: 塩野, 克宏
  organization: 福井県立大学・生物資源学部
BookMark eNo9UMtKw0AUHaSCtXbpZ6TOK5nJTim-IFCQug6TdEZTaitJNy6TIvhWpCBIoaBu6kJ3oiDkY4akuPIXbLW4uOdwHpzFXQSFdqctAVhGsEIQYithp9MNZVTBZoWyOVBEnEODIW4VQBHayDYw4ngBlKMo8CDEFpscLYL6Ts3RvRvde9bJw_fnff6RjvvD_OlyfDrS8ctXfDV1zt7y4_OJzAbD7PFCx--_0ShLBzq5zfuvOj7RyaRwp-NrHadLYF6JViTLMy6B3Y31enXLcGqb29U1x2hiTKEhFKOmpNTDJoSEQa4gkgQT4Vsm8hRSVEHpS0iJz5XEto8aZoNhQaS0qM09UgKrf7vNqCv2pHsYBgciPHJF2A38lnRnP3Gx6ZIpUPYf-fsidJuC_AD24HwJ
ContentType Journal Article
Copyright 2016 根研究学会
Copyright_xml – notice: 2016 根研究学会
DOI 10.3117/rootres.25.47
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1880-7186
EndPage 62
ExternalDocumentID article_rootres_25_3_25_47_article_char_ja
GroupedDBID .LE
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
KQ8
OK1
RJT
ID FETCH-LOGICAL-j2240-af745e44b25003708f01e323ac651bf1f4f0ece043c8fe29c1d5d72a3ee6498b3
ISSN 0919-2182
IngestDate Wed Sep 03 06:29:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2240-af745e44b25003708f01e323ac651bf1f4f0ece043c8fe29c1d5d72a3ee6498b3
OpenAccessLink https://www.jstage.jst.go.jp/article/rootres/25/3/25_47/_article/-char/ja
PageCount 16
ParticipantIDs jstage_primary_article_rootres_25_3_25_47_article_char_ja
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 根の研究
PublicationTitleAlternate 根の研究
PublicationYear 2016
Publisher 根研究学会
Publisher_xml – name: 根研究学会
References 57) McDonald, M.P., Galwey, N.W., Colmer, T.D. 2001a. Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ. 24: 585-596.
30) Garthwaite, A.J., Steudle, E., Colmer, T.D. 2006. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O<cstyle:下付き>2 loss does not affect root hydraulic conductivity. J. Exp. Bot. 57: 655-664.
4) Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7: 225-332.
23) De Simone, O., Haase, K., Müller, E., Junk, W.J., Gonsior, G., Schmidt, W. 2002. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29: 1025-1035.
49) Laan, P., Berrevoets, M.J., Lythe, S., Armstrong, W., Blom, C.W.P.M. 1989. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J. Ecol. 77: 693-703.
69) Ranathunge, K., Lin, J., Steudle, E., Schreiber, L. 2011. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ. 34: 1223-1240.
60) Mendelssohn, I.A., Postek, M.T. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am. J. Bot. 69: 904-912.
29) Gao, S., Tanji, K.K., Scardaci, S.C., Chow, A.T. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci. Soc. Am. J. 66: 805-817.
92) 渡邊宏太郎, 西内俊策, 大森史恵, 間野吉郎, 中園幹生 2013. トウモロコシとテオシントを用いた酸素漏出バリア関連形質の解析. 根の研究 22: 161.
17) Colmer, T.D. 2003b Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91: 301-309.
61) Molisch, H. 1887. Über wurzelausscheidungen und deren einwirkung auf organische substanzen. Sitzungsber. Akad. Wiss. Wien. Math. Nat. Kl. 96: 84-109.
42) Jung, J., Lee, S.C., Choi, H.-K. 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants. J. Plant Biol. 51: 428-439.
82) Smits, A.J.M., Laan, P., Thier, R.H., van der Velde, G. 1990. Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat. Aquat. Bot. 38: 3-17.
84) 高井康雄 1980. 水田土壌の動態に関する微生物学的研究I. 肥料科学 3:17-55.
75) Shiono, K., Ogawa, S., Yamazaki, S., Isoda, H., Fujimura, T., Nakazono, M., Colmer, T.D. 2011. Contrasting dynamics of radial O<cstyle:下付き>2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107: 89-99.
64) Mühlenbock, P., Plaszczyca, M., Plaszczyca, M., Mellerowicz, E., Karpinski, S. 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19: 3819-3830.
78) Shiono, K., Yamada, S. 2014. Waterlogging tolerance and capacity for oxygen transport in Brachypodium distachyon (Bd21). Plant Root. 8: 5-12.
19) Colmer, T.D., Cox, M.C.H., Voesenek, L.A.C.J. 2006. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170: 767-778.
36) Hartmann, K., Peiter, E., Koch, K., Schubert, S., Schreiber, L. 2002. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215: 14-25.
32) Gilbert, B., Frenzel, P. 1998. Rice roots and CH<cstyle:下付き>4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30: 1903-1916.
94) Wiengweera, A., Greenway, H., Thomson, C.J. 1997. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80: 115-123.
44) 木村眞人 1991. 土壌中の微生物とその働き (その7) -水田の微生物-. 農土誌 59: 1187-1194.
63) Mongon, J., Konnerup, D., Colmer, T.D., Rerkasem, B. 2014. Responses of rice to Fe<cstyle:上付き>2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier. Funct. Plant Biol. 41: 922-929.
91) Voesenek, L.A.C.J., Sasidharan, R. 2013. Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol. 15: 426-435.
8) Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W., Beckett, P.M. 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann. Bot. 86: 687-703.
31) Garthwaite, A.J., von Bothmer, R., Colmer, T.D. 2003. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Biol. 30: 875-889.
25) Denison, R.F. 1998. Decreased oxygen permeability: a universal stress response in legume root nodules. Bot. Acta 111: 191-192.
53) Malik, A.I., Islam, A.K.M.R., Colmer, T.D. 2011. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum – wheat amphiploids. New Phytol. 190: 499-508.
50) Laanbroek, H.J. 1990. Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquat. Bot. 38: 109-125.
67) Pauluzzi, G., Bailey-Serres, J. 2016. Flexible Ion Barrier. Cell 164: 345-346.
80) 塩野克宏, 高橋宏和, 中園幹生 2010. 過湿土壌に対する作物の応答と適応機構. 坂上潤一, 中園幹生, 島村聡, 伊藤治, 石澤公明 編, 湿地環境と作物 -環境と調和した作物生産をめざして-. 養賢堂, 東京, pp. 123-133.
88) Visser, E.J.W., Bögemann, G.M. 2003. Measurement of porosity in very small samples of plant tissue. Plant Soil 253: 81-90.
95) 山内卓樹, 中園幹生 2015. イネ科植物の根における過湿環境への形態的な応答・適応機構. 根の研究 24: 23-35.
3) Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192-197.
26) Enstone, D.E., Peterson, C.A. 2005. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ. 28: 444-455.
38) Insalud, N., Bell, R.W., Colmer, T.D., Rerkasem, B. 2006. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann. Bot. 98: 995-1004.
62) Møller, C.L., Sand-Jensen, K. 2008. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytol. 179: 848-856.
55) 間野吉郎, 小柳敦史 2009. イネ科作物の耐湿性研究の現状と今後の展開方向. 日作紀 78: 441-448.
7) Armstrong, J., Armstrong, W., Beckett, P.M. 1992. Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 120: 197-207.
48) 桑野美緒, 山口武視 2008. 湛水土壌・底質における酸素を放出する根と微生物作用との相互作用. 森田茂紀, 田島亮介 監訳, de Kroon, H., Visser, E.J.W. 編, 根の生態学. シュプリンガー・ジャパン, 東京. pp. 303-331.
58) McDonald, M.P., Galwey, N.W., Colmer, T.D. 2002. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 25: 441-451.
52) Malik, A.I., English, J.P., Colmer, T.D. 2009. Tolerance of Hordeum marinum accessions to O<cstyle:下付き>2 deficiency, salinity and these stresses combined. Ann. Bot. 103: 237-248.
54) Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R.M., Loaisiga, C.H. 2006 Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281: 269-279.
6) Armstrong, J., Armstrong, W. 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe<cstyle:上付き>2+ and water uptake, and lateral root emergence. Ann. Bot. 96: 625-638.
5) Armstrong, J., Armstrong, W. 2001. Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am. J. Bot. 88: 1359-1370.
81) 島村聡, 望月俊宏, 井之上準 1997. 数種マメ科作物の胚軸根における破生細胞間隙の形成. 日作紀 66: 208-213.
89) Voesenek, L.A.C.J., Bailey-Serres, J. 2015. Flood adaptive traits and processes: an overview. New Phytol. 206: 57-73.
13) Brix, H., Sorrel, B.K., Orr, P.T. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37: 1420-1433.
18) Colmer, T.D., Atwell, B.J., Ismail, A.M., Pedersen, O., Shabala, S., Sorrell, B., Voesenek, L.A.C.J. 2010. Waterlogging and submergence. Colmer, T.D., ed., Plants in action (Second edition) , On-line text book (http://plantsinaction.science.uq.edu.au/content/chapter-18-waterlogging-and-submergence).
71) Saleque, M.A., Kirk, G.J.D. 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol. 129: 325-336.
77) Shiono, K., Yamauchi, T., Yamazaki, S., Mohanty, B., Malik, A.I., Nagamura, Y., Nishizawa, N.K., Tsutsumi, N., Colmer, T.D., Nakazono, M. 2014b. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J. Exp. Bot. 65: 4795-4806.
90) Voesenek, L.A.C.J., Armstrong, W., Bögemann, G.M., McDonald, M.P., Colmer, T.D. 1999. A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust. J. Plant Physiol. 26: 87-93.
59) McDonald, M.P., Galwey, N.W., Ellneskog-Staam, P., Colmer, T.D. 2001b. Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol. 151: 369-380.
79) 塩野克宏, 高橋宏和, 中園幹生 2008. 植物は過湿土壌にどのように適応しているのか. 化学と生物 46: 245-251.
14) Cheng, H., Chen, D.-T., Tam, N.F.-Y., Chen, G.-Z., Li, S.-Y., Ye, Z.-H. 2012. Interactions among Fe<cstyle:上付き>2+, S<cstyle:上付き>2-, and Zn<cstyle:上付き>2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants. J. Exp. Bot. 63: 2619-2630.
66) Parsons, R., Day, D.A. 1990. Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ. 13: 501-512.
37) Healy, M.T., Armstrong, W. 1972. The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103: 302-309.
72) Sand-Jensen, K., Prahl, C., Stokholm, H
References_xml – reference: 89) Voesenek, L.A.C.J., Bailey-Serres, J. 2015. Flood adaptive traits and processes: an overview. New Phytol. 206: 57-73.
– reference: 48) 桑野美緒, 山口武視 2008. 湛水土壌・底質における酸素を放出する根と微生物作用との相互作用. 森田茂紀, 田島亮介 監訳, de Kroon, H., Visser, E.J.W. 編, 根の生態学. シュプリンガー・ジャパン, 東京. pp. 303-331.
– reference: 70) Rubinigg, M., Stulen, I., Elzenga, J.T.M., Colmer, T.D. 2002. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol. 29: 1475-1481.
– reference: 7) Armstrong, J., Armstrong, W., Beckett, P.M. 1992. Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 120: 197-207.
– reference: 49) Laan, P., Berrevoets, M.J., Lythe, S., Armstrong, W., Blom, C.W.P.M. 1989. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J. Ecol. 77: 693-703.
– reference: 57) McDonald, M.P., Galwey, N.W., Colmer, T.D. 2001a. Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ. 24: 585-596.
– reference: 18) Colmer, T.D., Atwell, B.J., Ismail, A.M., Pedersen, O., Shabala, S., Sorrell, B., Voesenek, L.A.C.J. 2010. Waterlogging and submergence. Colmer, T.D., ed., Plants in action (Second edition) , On-line text book (http://plantsinaction.science.uq.edu.au/content/chapter-18-waterlogging-and-submergence).
– reference: 20) Colmer, T.D., Gibberd, M.R., Wiengweera, A., Tinh, T.K. 1998. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J. Exp. Bot. 49: 1431-1436.
– reference: 41) James, E.K., Sprent, J.I., Minchin, F.R., Brewin, N.J. 1991. Intercellular location of glycoprotein in soybean nodules: effect of altered rhizosphere oxygen concentration. Plant Cell Environ. 14: 467-476.
– reference: 50) Laanbroek, H.J. 1990. Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquat. Bot. 38: 109-125.
– reference: 6) Armstrong, J., Armstrong, W. 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe<cstyle:上付き>2+ and water uptake, and lateral root emergence. Ann. Bot. 96: 625-638.
– reference: 75) Shiono, K., Ogawa, S., Yamazaki, S., Isoda, H., Fujimura, T., Nakazono, M., Colmer, T.D. 2011. Contrasting dynamics of radial O<cstyle:下付き>2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107: 89-99.
– reference: 32) Gilbert, B., Frenzel, P. 1998. Rice roots and CH<cstyle:下付き>4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30: 1903-1916.
– reference: 26) Enstone, D.E., Peterson, C.A. 2005. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ. 28: 444-455.
– reference: 42) Jung, J., Lee, S.C., Choi, H.-K. 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants. J. Plant Biol. 51: 428-439.
– reference: 66) Parsons, R., Day, D.A. 1990. Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ. 13: 501-512.
– reference: 80) 塩野克宏, 高橋宏和, 中園幹生 2010. 過湿土壌に対する作物の応答と適応機構. 坂上潤一, 中園幹生, 島村聡, 伊藤治, 石澤公明 編, 湿地環境と作物 -環境と調和した作物生産をめざして-. 養賢堂, 東京, pp. 123-133.
– reference: 92) 渡邊宏太郎, 西内俊策, 大森史恵, 間野吉郎, 中園幹生 2013. トウモロコシとテオシントを用いた酸素漏出バリア関連形質の解析. 根の研究 22: 161.
– reference: 55) 間野吉郎, 小柳敦史 2009. イネ科作物の耐湿性研究の現状と今後の展開方向. 日作紀 78: 441-448.
– reference: 29) Gao, S., Tanji, K.K., Scardaci, S.C., Chow, A.T. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci. Soc. Am. J. 66: 805-817.
– reference: 34) Greipsson, S., Crowder, A.A. 1992. Amelioration of copper and nickel toxicity by iron plaque on roots of rice (Oryza sativa). Can. J. Bot. 70: 824-830.
– reference: 73) Seago, J.L. Jr., Marsh, L.C., Stevens, K.J., Soukup, A., Votrubová, O., Enstone, D.E. 2005. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96: 565-579.
– reference: 65) Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., Nakazono, M. 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice 5: 2
– reference: 58) McDonald, M.P., Galwey, N.W., Colmer, T.D. 2002. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 25: 441-451.
– reference: 82) Smits, A.J.M., Laan, P., Thier, R.H., van der Velde, G. 1990. Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat. Aquat. Bot. 38: 3-17.
– reference: 8) Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W., Beckett, P.M. 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann. Bot. 86: 687-703.
– reference: 38) Insalud, N., Bell, R.W., Colmer, T.D., Rerkasem, B. 2006. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann. Bot. 98: 995-1004.
– reference: 79) 塩野克宏, 高橋宏和, 中園幹生 2008. 植物は過湿土壌にどのように適応しているのか. 化学と生物 46: 245-251.
– reference: 44) 木村眞人 1991. 土壌中の微生物とその働き (その7) -水田の微生物-. 農土誌 59: 1187-1194.
– reference: 51) Larsen, M., Santner, J., Oburger, E., Wenzel, W.W., Glud, R.N. 2015. O<cstyle:下付き>2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant Soil 390: 279-292.
– reference: 72) Sand-Jensen, K., Prahl, C., Stokholm, H. 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349-354.
– reference: 95) 山内卓樹, 中園幹生 2015. イネ科植物の根における過湿環境への形態的な応答・適応機構. 根の研究 24: 23-35.
– reference: 2) Armstrong, W. 1964. Oxygen diffusion from roots of some British bog plants. Nature 204: 801-802.
– reference: 35) Hansel, C.M., Fendorf, S., Sutton, S., Newville, M. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35: 3863-3868.
– reference: 21) Connell, E.L., Colmer, T.D., Walker, D.I. 1999. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat. Bot. 63: 219-228.
– reference: 59) McDonald, M.P., Galwey, N.W., Ellneskog-Staam, P., Colmer, T.D. 2001b. Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol. 151: 369-380.
– reference: 31) Garthwaite, A.J., von Bothmer, R., Colmer, T.D. 2003. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Biol. 30: 875-889.
– reference: 56) Manzur, M.E., Grimoldi, A.A., Insausti, P., Striker, G.G. 2015. Radial oxygen loss and physical barriers in relation to root tissue age in species with different types of aerenchyma. Funct. Plant Biol. 42: 9-17.
– reference: 33) Gladish, D.K., Niki, T. 2000. Factors inducing cavity formation in the vascular cylinders of pea roots (Pisum sativum L., cv. Alaska). Environ. Exp. Bot. 43: 1-9.
– reference: 39) Jackson, M.B., Armstrong, W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274-287.
– reference: 43) Justin, S.H.F.W., Armstrong, W. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106: 465-495.
– reference: 74) Shiono, K., Ando, M., Nishiuchi, S., Takahashi, H., Watanabe, K., Nakamura, M., Matsuo, Y., Yasuno, N., Yamanouchi, U., Fujimoto, M., Takanashi, H., Ranathunge, K., Franke, R.B., Shitan, N., Nishizawa, N.K., Takamure, I., Yano, M., Tsutsumi, N., Schreiber, L., Yazaki, K., Nakazono, M., Kato, K. 2014a. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J. 80: 40-51.
– reference: 90) Voesenek, L.A.C.J., Armstrong, W., Bögemann, G.M., McDonald, M.P., Colmer, T.D. 1999. A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust. J. Plant Physiol. 26: 87-93.
– reference: 60) Mendelssohn, I.A., Postek, M.T. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am. J. Bot. 69: 904-912.
– reference: 68) Promkhambut, A., Polthanee, A., Akkasaeng, C., Younger, A. 2011. Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (Sorghum bicolor L. Moench) as affected by flooding at different growth stages. Aust. J. Crop Sci. 5: 954-965.
– reference: 86) Tripathi, R.D., Tripathi, P., Dwivedi, S., Kumar, A., Mishra, A., Chauhan, P.S., Norton, G.J., Nautiyal, C.S. 2014. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6: 1789-1800.
– reference: 27) Enstone, D.E., Peterson, C.A., Ma, F. 2003. Root endodermis and exodermis: structure, function, and responses to the environment. J. Plant Growth Regul. 21: 335-351.
– reference: 67) Pauluzzi, G., Bailey-Serres, J. 2016. Flexible Ion Barrier. Cell 164: 345-346.
– reference: 5) Armstrong, J., Armstrong, W. 2001. Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am. J. Bot. 88: 1359-1370.
– reference: 53) Malik, A.I., Islam, A.K.M.R., Colmer, T.D. 2011. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum – wheat amphiploids. New Phytol. 190: 499-508.
– reference: 62) Møller, C.L., Sand-Jensen, K. 2008. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytol. 179: 848-856.
– reference: 77) Shiono, K., Yamauchi, T., Yamazaki, S., Mohanty, B., Malik, A.I., Nagamura, Y., Nishizawa, N.K., Tsutsumi, N., Colmer, T.D., Nakazono, M. 2014b. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J. Exp. Bot. 65: 4795-4806.
– reference: 85) Thomson, C.J., Colmer, T.D., Watkin, E.L.J., Greenway, H. 1992. Tolerance of wheat (Triticum aestivum cvs Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol. 120: 335-344.
– reference: 15) Christensen, K.K., Sand-Jensen, K. 1998. Precipitated iron and manganese plaques restrict root uptake of phosphorus in Lobelia dortmanna. Can. J. Bot. 76: 2158-2163.
– reference: 23) De Simone, O., Haase, K., Müller, E., Junk, W.J., Gonsior, G., Schmidt, W. 2002. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29: 1025-1035.
– reference: 45) Kotula, L., Colmer, T.D., Nakazono, M. 2014. Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Funct. Plant Biol. 41: 187-202.
– reference: 94) Wiengweera, A., Greenway, H., Thomson, C.J. 1997. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80: 115-123.
– reference: 93) Watanabe, K., Nishiuchi, S., Kulichikhin, K., Nakazono, M. 2013. Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front. Plant Sci. 4: 178.
– reference: 25) Denison, R.F. 1998. Decreased oxygen permeability: a universal stress response in legume root nodules. Bot. Acta 111: 191-192.
– reference: 19) Colmer, T.D., Cox, M.C.H., Voesenek, L.A.C.J. 2006. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170: 767-778.
– reference: 83) Soukup, A., Armstrong, W., Schreiber, L., Franke, R., Votrubová, O. 2007. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 173: 264-278.
– reference: 37) Healy, M.T., Armstrong, W. 1972. The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103: 302-309.
– reference: 81) 島村聡, 望月俊宏, 井之上準 1997. 数種マメ科作物の胚軸根における破生細胞間隙の形成. 日作紀 66: 208-213.
– reference: 10) Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A.C.J., var Dongen, J.T. 2012. Making sense of low oxygen sensing. Trends Plant Sci. 17: 129-138.
– reference: 40) Jackson, M.B., Drew, M.C. 1984. Effects of flooding on growth and metabolism of herbaceous plants. In Kozlowski, T.T., ed., Flooding and plant growth. Academic Press, New York, pp. 47-128.
– reference: 87) Visser, E.J.W., Colmer, T.D., Blom, C.W.P.M., Voesenek, L.A.C.J. 2000. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ. 23: 1237-1245.
– reference: 91) Voesenek, L.A.C.J., Sasidharan, R. 2013. Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol. 15: 426-435.
– reference: 3) Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol. Plant. 25: 192-197.
– reference: 14) Cheng, H., Chen, D.-T., Tam, N.F.-Y., Chen, G.-Z., Li, S.-Y., Ye, Z.-H. 2012. Interactions among Fe<cstyle:上付き>2+, S<cstyle:上付き>2-, and Zn<cstyle:上付き>2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants. J. Exp. Bot. 63: 2619-2630.
– reference: 22) Davison, W., Seed, G. 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Ac. 47: 67-79.
– reference: 63) Mongon, J., Konnerup, D., Colmer, T.D., Rerkasem, B. 2014. Responses of rice to Fe<cstyle:上付き>2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier. Funct. Plant Biol. 41: 922-929.
– reference: 4) Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7: 225-332.
– reference: 61) Molisch, H. 1887. Über wurzelausscheidungen und deren einwirkung auf organische substanzen. Sitzungsber. Akad. Wiss. Wien. Math. Nat. Kl. 96: 84-109.
– reference: 13) Brix, H., Sorrel, B.K., Orr, P.T. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37: 1420-1433.
– reference: 1) Abiko, T., Kotula, L., Shiono, K., Malik, A.I., Colmer, T.D., Nakazono, M. 2012. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 35: 1618-1630.
– reference: 28) Fleck, A.T., Nye, T., Repenning, C., Stahl, F., Zahn, M., Schenk, M.K. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J. Exp. Bot. 62: 2001-2011.
– reference: 30) Garthwaite, A.J., Steudle, E., Colmer, T.D. 2006. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O<cstyle:下付き>2 loss does not affect root hydraulic conductivity. J. Exp. Bot. 57: 655-664.
– reference: 16) Colmer, T.D. 2003a. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17-36.
– reference: 52) Malik, A.I., English, J.P., Colmer, T.D. 2009. Tolerance of Hordeum marinum accessions to O<cstyle:下付き>2 deficiency, salinity and these stresses combined. Ann. Bot. 103: 237-248.
– reference: 64) Mühlenbock, P., Plaszczyca, M., Plaszczyca, M., Mellerowicz, E., Karpinski, S. 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19: 3819-3830.
– reference: 84) 高井康雄 1980. 水田土壌の動態に関する微生物学的研究I. 肥料科学 3:17-55.
– reference: 24) De Simone, O., Haase, K., Müller, E., Junk, W.J., Hartmann, K., Schreiber, L., Schmidt, W. 2003. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol. 132: 206-217.
– reference: 17) Colmer, T.D. 2003b Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91: 301-309.
– reference: 36) Hartmann, K., Peiter, E., Koch, K., Schubert, S., Schreiber, L. 2002. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215: 14-25.
– reference: 71) Saleque, M.A., Kirk, G.J.D. 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol. 129: 325-336.
– reference: 78) Shiono, K., Yamada, S. 2014. Waterlogging tolerance and capacity for oxygen transport in Brachypodium distachyon (Bd21). Plant Root. 8: 5-12.
– reference: 9) Bacanamwo, M., Purcell, L.C. 1999. Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci. 39: 143-149.
– reference: 46) Kotula, L., Ranathunge, K., Schreiber, L., Steudle, E. 2009. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60: 2155-2167.
– reference: 54) Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R.M., Loaisiga, C.H. 2006 Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281: 269-279.
– reference: 11) Bartlett, R. J. 1961. Iron oxidation proximate to plant roots. Soil Sci. 92: 372-379.
– reference: 12) Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.-U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128: 469-477.
– reference: 69) Ranathunge, K., Lin, J., Steudle, E., Schreiber, L. 2011. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ. 34: 1223-1240.
– reference: 47) Kulichikhin, K., Yamauchi, T., Watanabe, K., Nakazono, M. 2014. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant Cell Environ. 37: 2406-2420.
– reference: 76) Shiono, K., Takahashi, H., Colmer, T.D., Nakazono, M. 2008. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 175: 52-58.
– reference: 88) Visser, E.J.W., Bögemann, G.M. 2003. Measurement of porosity in very small samples of plant tissue. Plant Soil 253: 81-90.
SSID ssib002670264
ssib005901888
ssib002512038
ssib005296156
ssj0069523
ssib002670987
Score 2.044883
Snippet 過湿状態の土壌は低酸素になるだけでなく,還元化による有毒物質が増加するため,ほとんどの植物の生育が阻害される.イネやヨシなどの湿生植物は,根に酸素を通気する細...
SourceID jstage
SourceType Publisher
StartPage 47
SubjectTerms ROLバリア(酸素漏出バリア)
スベリン
根圏酸化
湿害
通気組織
Title ROLバリア:湿生植物の過湿状態の土壌への適応を支えるしくみ
URI https://www.jstage.jst.go.jp/article/rootres/25/3/25_47/_article/-char/ja
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 根の研究, 2016, Vol.25(3), pp.47-62
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-7186
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069523
  issn: 0919-2182
  databaseCode: KQ8
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBcIjRgxfxiW9ysA8eJs5Mv48zm1mC-EDZQG7DzOzMYQ9JkOSgt00QfCsSECQQUC_xoDdREPZjhmzw5C9Y1T27zgYPUS9NT3V1dXVXP6ofVeM4V7Iso6IrC7cUvMRrRulqL8tdLr1UsC4thLmKuXlLzC-w64t8cerQ1carpbXVbDZ_8Ee7kn-RKsBArmgl-xeSHRMFAMRBvhCChCE8kIzv3r5BYkoUJdqrI2FoIgEJAxK3SdQiGiCCRJpEbRJLohnRbYSEoEXOIURpEmqTyydhTGKNERVP5FIhiQRCFCcqaiBzoluGICchAFt1UqT2E8QiOFLTrZpDHSBB4Cds18hK1UnjIrQcJY1woomHiKYiHvL5uziJECCLEeB_fPRoeLSMAEcSqwj9C6F1pThmV-3mQYi10DSdtlHU_hJM1jkSQoTZJm-egPraRQf2dim08z9MZy4s16K5QFjL7Hog0MZsb32F1nqDXVT2r0jUN26sYBeEpj-zAZ8dZZpw8l13oaTGSwKeUAyYTEZJaIWX9GArcDjAoyd8f3BnYqcYeE1PekJ6wYTjfenphiaO1-1-w40SmiArNb6AE5qbPyOO28i6p8XaXJuoCyhuPdjGjJ5AGq2sc9w5Vm-nZkLL_QlnqpeedI5Ey7DluX_K6cAAqTZeVRsfq_V3P7-_HX4b7G1uDz8833u8U_U__ei_QMiTL8OHT-Fzd2t79_2zqv_VJO3sDraq9dfDzc9V_1G1Dghvqv7Lqj847Sy0405r3q1_I-L2UF9101IyXjCWgbbvUemp0vMLGtA0F9zPSr9kpVfkhcdorsoi0Lnf5V0ZpLQoBNMqo2ec6aXlpeKsM0MBTQBOJgv0n6vTrGTQOKnOS1DkGTvnaNsayYr1FZMcXLDn_yPvBecojgh7NHjRmV69t1ZcAmV5NbtsuskvRM6oUA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROL%E3%83%90%E3%83%AA%E3%82%A2%EF%BC%9A%E6%B9%BF%E7%94%9F%E6%A4%8D%E7%89%A9%E3%81%AE%E9%81%8E%E6%B9%BF%E7%8A%B6%E6%85%8B%E3%81%AE%E5%9C%9F%E5%A3%8C%E3%81%B8%E3%81%AE%E9%81%A9%E5%BF%9C%E3%82%92%E6%94%AF%E3%81%88%E3%82%8B%E3%81%97%E3%81%8F%E3%81%BF&rft.jtitle=%E6%A0%B9%E3%81%AE%E7%A0%94%E7%A9%B6&rft.au=%E5%A1%A9%E9%87%8E%2C+%E5%85%8B%E5%AE%8F&rft.date=2016&rft.pub=%E6%A0%B9%E7%A0%94%E7%A9%B6%E5%AD%A6%E4%BC%9A&rft.issn=0919-2182&rft.eissn=1880-7186&rft.volume=25&rft.issue=3&rft.spage=47&rft.epage=62&rft_id=info:doi/10.3117%2Frootres.25.47&rft.externalDocID=article_rootres_25_3_25_47_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0919-2182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0919-2182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0919-2182&client=summon