ハイパーグラフ上の熱とそのネットワーク解析への応用
Saved in:
Published in | 応用数理 Vol. 31; no. 2; pp. 2 - 10 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本応用数理学会
24.06.2021
|
Online Access | Get full text |
ISSN | 2432-1982 |
DOI | 10.11540/bjsiam.31.2_2 |
Cover
Author | 池田, 正弘 |
---|---|
Author_xml | – sequence: 1 fullname: 池田, 正弘 organization: 理化学研究所革新知能統合研究科数理科学チーム |
BookMark | eNo1j81Kw0AcxBdRsNZefYvE_cpmcxGk-IUFL3peNslGE9oqSS8e0wURoaigN_WiYL1YvfUg-DB_tT6GxehlZuA3DMwCmu0edg1CSwS7hHgcL4dZkeqOy4hLFZ1BNcoZdUgg6TxqFEWGMWYMCy5FDW2DPYf-A9hLsG_QfwH7BPb6Y3wG5fPk5BXKIZS30wx2ANaCPQU7-m2Ovh_vv-4uoBxP6ef7zeRquIjmEt0uTOPP62hvfW23uem0dja2mqstJ6MUC4dz5gVRLLXnU5bE1JjICE6IwT4PQxFLP2Y4ZhKLhMuE4yAONY4o8UXgSyM8Vkcr1W5W9PS-UUd52tH5sdJ5L43aRlX3FSOKVvIPogOdq0yzHxk6cuo |
ContentType | Journal Article |
Copyright | 2021日本応用数理学会 |
Copyright_xml | – notice: 2021日本応用数理学会 |
DOI | 10.11540/bjsiam.31.2_2 |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2432-1982 |
EndPage | 10 |
ExternalDocumentID | article_bjsiam_31_2_31_2_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT |
ID | FETCH-LOGICAL-j2206-44359cd8a5723fd2eece6411e074bb6d87d30d3806f48f409dba0c2176978e653 |
IngestDate | Thu Nov 07 05:23:13 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2206-44359cd8a5723fd2eece6411e074bb6d87d30d3806f48f409dba0c2176978e653 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bjsiam/31/2/31_2/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | jstage_primary_article_bjsiam_31_2_31_2_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2021/06/24 |
PublicationDateYYYYMMDD | 2021-06-24 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021/06/24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | 応用数理 |
PublicationYear | 2021 |
Publisher | 一般社団法人 日本応用数理学会 |
Publisher_xml | – name: 一般社団法人 日本応用数理学会 |
References | [3] Andersen, R., Chung, F., and Lang, K., Using PageRank to locally partition a graph, Internet Mathematics, 4 (2007), 35–64. [16] Lee, J. R., Gharan, S. O., and Trevisan, L., Multiway spectral partitioning and higher-order Cheeger ineuqalities, Journal of the ACM, 61 (2014), 37–30. [25] Takai, Y., Miyauchi, A., Ikeda, M., and Yoshida, Y., Hypergraph clustering based on Pagerank, 26nd ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD), 2020, 1970–1978. [14] Kwok, T. C., Lau, L. C., Lee, Y. T., Oveis Charan S., and Trevisan, L., Improved Cheegerʼs inequality: analysis of spectral partitioning algorithms through higher order spectral gap, in Proceedings of the 45 annual ACM symposium on Theory of Computing (STOC), 2013, 11–20. [5] Back, F., Learning with submodular functions:A convex optimization perspective, Foundations and Trends in Machine Learning, 6, 2013, 145–373. [18] Li, P., and Milenkovic, O., Submodular hypergraphs: p-Laplacians, Cheeger inequalities and spectral clustering, in Proceedings of Machine Learning Research, 2018, 3014–3023. [22] Raghavendra, P., and Steurer, D., Graph expansion and the unique games conjecture, in Proceedings of the 42nd ACM Annual Symposium on Theory of Computing (STOC), 2010, 755–764. [15] Komura, Y., Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493–507. [12] Ikeda, M., Miyauchi, A., Takai, Y., and Yoshida, Y., Finding Cheeger cuts in hypergraphs via heat equation, arXiv:1809.04396. [28] Zhou, D., Huang, J., and Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Advances in Neural Information in Processing Systems 20 (NIPS) 2007, 1601–1608. [8] Chung, F., Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1–19. [20] Louis, A., Hypergraph markov operators, eigenvalues and approximation algorithms, in Proceedings of the 47 annual ACM symposium on Theory of Computing (STOC), 2015, 713–722. [21] Louis, A., Raghavendra, P., Tetali, P., and Vempala, S., Many sparse cuts via higher eigenvalues, in Proceedings of the 44 annual ACM symposium on Theory of Computing (STOC), 2012, 1131–1140. [27] Yoshida, Y., Cheeger inequalities for submodular transformations, in Proceedings of the 2019 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019, 2582–2601. [29] Zien, J. Y., Schlag, M. D. F., and Chan, P. K., Multilevel spectral hypergraph partitionaing with arbitrary vertex sizes, IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9, 1999, 1389–1399. [26] Yoshida, Y., Nonlinear Laplacian for digraphs and its applications to network analysis, in Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM) 2016, 483–492. [13] Jeh, G., and Widom, J., Scaling personalized web search, in Proceedings of the 12th international conference on World Wide Web (WWW), 2003, 271–279. [1] Alon, N., Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96. [10] Fujii, K., Soma, T., and Yoshida, Y., Polynomial-time algorithms for submodular Laplacian system, arXiv: 1803.10923. [19] Li, Y., and Zhang, Z.-L., Digraph Laplacian and the degree of asymmetry, Internet Mathematics, 8 (2012), 381–401. [23] Raghavendra, P., Steurer, D., and Tulsiani, M., Reductions between expansion problems, in Proceedings of the 27th IEEE Annual Conference on Computational Complexity (CCC), 2012, 64–73. [4] Agarwal, S., Lim, J., Z.-Manor, L., Perona, P., Kriegman D., and Belongie, S., Beyond pairwise clustering, in IEEE Conf. on Computer Vision and Pattern Recognition, 2005, 838–845. [17] Li, P., He, N., and Milenkovic, O., Quadratic decomposable submodular function minimization, Advances in Neural Information Processing Systems 31 (NeurIPS), 2018, 1414–1422. [24] 坂内健一,高井勇輝,純粋数学とAI,数理科学,7 (2020), 6–12 [9] Chung, F., The heat kernel as the pagerank of a graph, in Proceedings of the National Academy of Sciences of the United States of America, 104 (2007), 19735–19740. [7] Chan, T-H. H., Louis, A., Tang, Z.G., and Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM 65, 3 (2018), 15–48. [11] Fujishige, S., Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, 2nd edition, 2005. [2] Alon, N., and Milman, V. D., λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory, Series B, 38 (1985), 73–88. [6] Bauer, F., Normalized graph Laplacians for directed graphs, Linear Algebra and its Applications, 436, 2012, 4193–4222. |
References_xml | – reference: [21] Louis, A., Raghavendra, P., Tetali, P., and Vempala, S., Many sparse cuts via higher eigenvalues, in Proceedings of the 44 annual ACM symposium on Theory of Computing (STOC), 2012, 1131–1140. – reference: [22] Raghavendra, P., and Steurer, D., Graph expansion and the unique games conjecture, in Proceedings of the 42nd ACM Annual Symposium on Theory of Computing (STOC), 2010, 755–764. – reference: [7] Chan, T-H. H., Louis, A., Tang, Z.G., and Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM 65, 3 (2018), 15–48. – reference: [27] Yoshida, Y., Cheeger inequalities for submodular transformations, in Proceedings of the 2019 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019, 2582–2601. – reference: [13] Jeh, G., and Widom, J., Scaling personalized web search, in Proceedings of the 12th international conference on World Wide Web (WWW), 2003, 271–279. – reference: [23] Raghavendra, P., Steurer, D., and Tulsiani, M., Reductions between expansion problems, in Proceedings of the 27th IEEE Annual Conference on Computational Complexity (CCC), 2012, 64–73. – reference: [16] Lee, J. R., Gharan, S. O., and Trevisan, L., Multiway spectral partitioning and higher-order Cheeger ineuqalities, Journal of the ACM, 61 (2014), 37–30. – reference: [25] Takai, Y., Miyauchi, A., Ikeda, M., and Yoshida, Y., Hypergraph clustering based on Pagerank, 26nd ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD), 2020, 1970–1978. – reference: [24] 坂内健一,高井勇輝,純粋数学とAI,数理科学,7 (2020), 6–12. – reference: [5] Back, F., Learning with submodular functions:A convex optimization perspective, Foundations and Trends in Machine Learning, 6, 2013, 145–373. – reference: [17] Li, P., He, N., and Milenkovic, O., Quadratic decomposable submodular function minimization, Advances in Neural Information Processing Systems 31 (NeurIPS), 2018, 1414–1422. – reference: [11] Fujishige, S., Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, 2nd edition, 2005. – reference: [4] Agarwal, S., Lim, J., Z.-Manor, L., Perona, P., Kriegman D., and Belongie, S., Beyond pairwise clustering, in IEEE Conf. on Computer Vision and Pattern Recognition, 2005, 838–845. – reference: [12] Ikeda, M., Miyauchi, A., Takai, Y., and Yoshida, Y., Finding Cheeger cuts in hypergraphs via heat equation, arXiv:1809.04396. – reference: [26] Yoshida, Y., Nonlinear Laplacian for digraphs and its applications to network analysis, in Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM) 2016, 483–492. – reference: [10] Fujii, K., Soma, T., and Yoshida, Y., Polynomial-time algorithms for submodular Laplacian system, arXiv: 1803.10923. – reference: [28] Zhou, D., Huang, J., and Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Advances in Neural Information in Processing Systems 20 (NIPS) 2007, 1601–1608. – reference: [29] Zien, J. Y., Schlag, M. D. F., and Chan, P. K., Multilevel spectral hypergraph partitionaing with arbitrary vertex sizes, IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9, 1999, 1389–1399. – reference: [3] Andersen, R., Chung, F., and Lang, K., Using PageRank to locally partition a graph, Internet Mathematics, 4 (2007), 35–64. – reference: [20] Louis, A., Hypergraph markov operators, eigenvalues and approximation algorithms, in Proceedings of the 47 annual ACM symposium on Theory of Computing (STOC), 2015, 713–722. – reference: [14] Kwok, T. C., Lau, L. C., Lee, Y. T., Oveis Charan S., and Trevisan, L., Improved Cheegerʼs inequality: analysis of spectral partitioning algorithms through higher order spectral gap, in Proceedings of the 45 annual ACM symposium on Theory of Computing (STOC), 2013, 11–20. – reference: [18] Li, P., and Milenkovic, O., Submodular hypergraphs: p-Laplacians, Cheeger inequalities and spectral clustering, in Proceedings of Machine Learning Research, 2018, 3014–3023. – reference: [8] Chung, F., Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1–19. – reference: [9] Chung, F., The heat kernel as the pagerank of a graph, in Proceedings of the National Academy of Sciences of the United States of America, 104 (2007), 19735–19740. – reference: [15] Komura, Y., Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493–507. – reference: [1] Alon, N., Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96. – reference: [6] Bauer, F., Normalized graph Laplacians for directed graphs, Linear Algebra and its Applications, 436, 2012, 4193–4222. – reference: [19] Li, Y., and Zhang, Z.-L., Digraph Laplacian and the degree of asymmetry, Internet Mathematics, 8 (2012), 381–401. – reference: [2] Alon, N., and Milman, V. D., λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory, Series B, 38 (1985), 73–88. |
SSID | ssj0003306486 ssib025294388 |
Score | 1.8653336 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 2 |
Title | ハイパーグラフ上の熱とそのネットワーク解析への応用 |
URI | https://www.jstage.jst.go.jp/article/bjsiam/31/2/31_2/_article/-char/ja |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 応用数理, 2021/06/24, Vol.31(2), pp.2-10 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library databaseCode: KQ8 dateStart: 20160101 customDbUrl: isFulltext: true eissn: 2432-1982 dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0003306486 providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxcKn14kUUFb_pwRy3bj43Oe6-t49iQRBa7G3ZT-gDq-jrxdvrgoggKuhNvShYL1ZvPQj-mKj1ZzjJZt97tYK17BKGyezMJBM2M2GSeN61vA5qjPPap1WW-azipS9LVvu4VELhuuLwmGyLm2Jpld1Y42tzx27PZC1tjvLF4uFf95UcxaqAA7uaXbL_YdkJU0AADPaFEiwM5aFsjBKKJLwDCxAUMYdR2AFxz1XFgcNEqqPhKGEolkhGFoNRlKAkRFKgGHcY6QDVn6FphfY7gHaA7EQM_pRuMBJFIYqAWCCVIBU4hrGc4cxRPECqZ9RQDKTPus4Hay0rbpsWGoZysspoaqARUeBogQSGksFGfasDN7q1F1N3ax7E5maR6Zpn1z2B0R0aF1nJ0Mex1VTFrjXxpC8jeK0UBXTcAj372b81NzRGN2EZgW7uWFb7jyaMEh8ruW9CcdPa-kxc72aHGTejTeY9OIGBBw3DLh8-WM_uLFK8SFIynaonCZRuyKUtXUpxStqiqzB79tIhBA7HSSiEudpj-dbkR0s4UYy6c-qMy0JNHCqFO9TU6HB9nwbgng0hWOkSHa3vtXLKO-mCpoWolXramxtmZ7xl3TzTW-9180I3X_XWZ9181M2r77tP9PjT3qMverytx28A1s1T3TS6eaybHUu58-vDu59vn-vxLtT--PZ67-X2WW91kKz0lnx3NYg_JAQGAwMvXxWlzHhIaF2SqioqwTCuwCPOc1HKsKRBSWUgaiZrFqgyz4ICwm-hQlkJTs958xt3N6rz3gLPijzLRMHDULKCZHnFZBUCBkuJa4oveGHb9vRee_5LetjOv3jkLy95J6bD_rI3P7q_WV0B53eUX7WG_A1ejJXp |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%8F%E3%82%A4%E3%83%91%E3%83%BC%E3%82%B0%E3%83%A9%E3%83%95%E4%B8%8A%E3%81%AE%E7%86%B1%E3%81%A8%E3%81%9D%E3%81%AE%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E8%A7%A3%E6%9E%90%E3%81%B8%E3%81%AE%E5%BF%9C%E7%94%A8&rft.jtitle=%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86&rft.au=%E6%B1%A0%E7%94%B0%2C+%E6%AD%A3%E5%BC%98&rft.date=2021-06-24&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86%E5%AD%A6%E4%BC%9A&rft.eissn=2432-1982&rft.volume=31&rft.issue=2&rft.spage=2&rft.epage=10&rft_id=info:doi/10.11540%2Fbjsiam.31.2_2&rft.externalDocID=article_bjsiam_31_2_31_2_article_char_ja |