ハイパーグラフ上の熱とそのネットワーク解析への応用

Saved in:
Bibliographic Details
Published in応用数理 Vol. 31; no. 2; pp. 2 - 10
Main Author 池田, 正弘
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本応用数理学会 24.06.2021
Online AccessGet full text
ISSN2432-1982
DOI10.11540/bjsiam.31.2_2

Cover

Author 池田, 正弘
Author_xml – sequence: 1
  fullname: 池田, 正弘
  organization: 理化学研究所革新知能統合研究科数理科学チーム
BookMark eNo1j81Kw0AcxBdRsNZefYvE_cpmcxGk-IUFL3peNslGE9oqSS8e0wURoaigN_WiYL1YvfUg-DB_tT6GxehlZuA3DMwCmu0edg1CSwS7hHgcL4dZkeqOy4hLFZ1BNcoZdUgg6TxqFEWGMWYMCy5FDW2DPYf-A9hLsG_QfwH7BPb6Y3wG5fPk5BXKIZS30wx2ANaCPQU7-m2Ovh_vv-4uoBxP6ef7zeRquIjmEt0uTOPP62hvfW23uem0dja2mqstJ6MUC4dz5gVRLLXnU5bE1JjICE6IwT4PQxFLP2Y4ZhKLhMuE4yAONY4o8UXgSyM8Vkcr1W5W9PS-UUd52tH5sdJ5L43aRlX3FSOKVvIPogOdq0yzHxk6cuo
ContentType Journal Article
Copyright 2021日本応用数理学会
Copyright_xml – notice: 2021日本応用数理学会
DOI 10.11540/bjsiam.31.2_2
DeliveryMethod fulltext_linktorsrc
EISSN 2432-1982
EndPage 10
ExternalDocumentID article_bjsiam_31_2_31_2_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j2206-44359cd8a5723fd2eece6411e074bb6d87d30d3806f48f409dba0c2176978e653
IngestDate Thu Nov 07 05:23:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2206-44359cd8a5723fd2eece6411e074bb6d87d30d3806f48f409dba0c2176978e653
OpenAccessLink https://www.jstage.jst.go.jp/article/bjsiam/31/2/31_2/_article/-char/ja
PageCount 9
ParticipantIDs jstage_primary_article_bjsiam_31_2_31_2_article_char_ja
PublicationCentury 2000
PublicationDate 2021/06/24
PublicationDateYYYYMMDD 2021-06-24
PublicationDate_xml – month: 06
  year: 2021
  text: 2021/06/24
  day: 24
PublicationDecade 2020
PublicationTitle 応用数理
PublicationYear 2021
Publisher 一般社団法人 日本応用数理学会
Publisher_xml – name: 一般社団法人 日本応用数理学会
References [3] Andersen, R., Chung, F., and Lang, K., Using PageRank to locally partition a graph, Internet Mathematics, 4 (2007), 35–64.
[16] Lee, J. R., Gharan, S. O., and Trevisan, L., Multiway spectral partitioning and higher-order Cheeger ineuqalities, Journal of the ACM, 61 (2014), 37–30.
[25] Takai, Y., Miyauchi, A., Ikeda, M., and Yoshida, Y., Hypergraph clustering based on Pagerank, 26nd ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD), 2020, 1970–1978.
[14] Kwok, T. C., Lau, L. C., Lee, Y. T., Oveis Charan S., and Trevisan, L., Improved Cheegerʼs inequality: analysis of spectral partitioning algorithms through higher order spectral gap, in Proceedings of the 45 annual ACM symposium on Theory of Computing (STOC), 2013, 11–20.
[5] Back, F., Learning with submodular functions:A convex optimization perspective, Foundations and Trends in Machine Learning, 6, 2013, 145–373.
[18] Li, P., and Milenkovic, O., Submodular hypergraphs: p-Laplacians, Cheeger inequalities and spectral clustering, in Proceedings of Machine Learning Research, 2018, 3014–3023.
[22] Raghavendra, P., and Steurer, D., Graph expansion and the unique games conjecture, in Proceedings of the 42nd ACM Annual Symposium on Theory of Computing (STOC), 2010, 755–764.
[15] Komura, Y., Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493–507.
[12] Ikeda, M., Miyauchi, A., Takai, Y., and Yoshida, Y., Finding Cheeger cuts in hypergraphs via heat equation, arXiv:1809.04396.
[28] Zhou, D., Huang, J., and Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Advances in Neural Information in Processing Systems 20 (NIPS) 2007, 1601–1608.
[8] Chung, F., Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1–19.
[20] Louis, A., Hypergraph markov operators, eigenvalues and approximation algorithms, in Proceedings of the 47 annual ACM symposium on Theory of Computing (STOC), 2015, 713–722.
[21] Louis, A., Raghavendra, P., Tetali, P., and Vempala, S., Many sparse cuts via higher eigenvalues, in Proceedings of the 44 annual ACM symposium on Theory of Computing (STOC), 2012, 1131–1140.
[27] Yoshida, Y., Cheeger inequalities for submodular transformations, in Proceedings of the 2019 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019, 2582–2601.
[29] Zien, J. Y., Schlag, M. D. F., and Chan, P. K., Multilevel spectral hypergraph partitionaing with arbitrary vertex sizes, IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9, 1999, 1389–1399.
[26] Yoshida, Y., Nonlinear Laplacian for digraphs and its applications to network analysis, in Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM) 2016, 483–492.
[13] Jeh, G., and Widom, J., Scaling personalized web search, in Proceedings of the 12th international conference on World Wide Web (WWW), 2003, 271–279.
[1] Alon, N., Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96.
[10] Fujii, K., Soma, T., and Yoshida, Y., Polynomial-time algorithms for submodular Laplacian system, arXiv: 1803.10923.
[19] Li, Y., and Zhang, Z.-L., Digraph Laplacian and the degree of asymmetry, Internet Mathematics, 8 (2012), 381–401.
[23] Raghavendra, P., Steurer, D., and Tulsiani, M., Reductions between expansion problems, in Proceedings of the 27th IEEE Annual Conference on Computational Complexity (CCC), 2012, 64–73.
[4] Agarwal, S., Lim, J., Z.-Manor, L., Perona, P., Kriegman D., and Belongie, S., Beyond pairwise clustering, in IEEE Conf. on Computer Vision and Pattern Recognition, 2005, 838–845.
[17] Li, P., He, N., and Milenkovic, O., Quadratic decomposable submodular function minimization, Advances in Neural Information Processing Systems 31 (NeurIPS), 2018, 1414–1422.
[24] 坂内健一,高井勇輝,純粋数学とAI,数理科学,7 (2020), 6–12
[9] Chung, F., The heat kernel as the pagerank of a graph, in Proceedings of the National Academy of Sciences of the United States of America, 104 (2007), 19735–19740.
[7] Chan, T-H. H., Louis, A., Tang, Z.G., and Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM 65, 3 (2018), 15–48.
[11] Fujishige, S., Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, 2nd edition, 2005.
[2] Alon, N., and Milman, V. D., λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory, Series B, 38 (1985), 73–88.
[6] Bauer, F., Normalized graph Laplacians for directed graphs, Linear Algebra and its Applications, 436, 2012, 4193–4222.
References_xml – reference: [21] Louis, A., Raghavendra, P., Tetali, P., and Vempala, S., Many sparse cuts via higher eigenvalues, in Proceedings of the 44 annual ACM symposium on Theory of Computing (STOC), 2012, 1131–1140.
– reference: [22] Raghavendra, P., and Steurer, D., Graph expansion and the unique games conjecture, in Proceedings of the 42nd ACM Annual Symposium on Theory of Computing (STOC), 2010, 755–764.
– reference: [7] Chan, T-H. H., Louis, A., Tang, Z.G., and Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM 65, 3 (2018), 15–48.
– reference: [27] Yoshida, Y., Cheeger inequalities for submodular transformations, in Proceedings of the 2019 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019, 2582–2601.
– reference: [13] Jeh, G., and Widom, J., Scaling personalized web search, in Proceedings of the 12th international conference on World Wide Web (WWW), 2003, 271–279.
– reference: [23] Raghavendra, P., Steurer, D., and Tulsiani, M., Reductions between expansion problems, in Proceedings of the 27th IEEE Annual Conference on Computational Complexity (CCC), 2012, 64–73.
– reference: [16] Lee, J. R., Gharan, S. O., and Trevisan, L., Multiway spectral partitioning and higher-order Cheeger ineuqalities, Journal of the ACM, 61 (2014), 37–30.
– reference: [25] Takai, Y., Miyauchi, A., Ikeda, M., and Yoshida, Y., Hypergraph clustering based on Pagerank, 26nd ACM SIGKDD Conference on Knowledge Discovery and Data mining (KDD), 2020, 1970–1978.
– reference: [24] 坂内健一,高井勇輝,純粋数学とAI,数理科学,7 (2020), 6–12.
– reference: [5] Back, F., Learning with submodular functions:A convex optimization perspective, Foundations and Trends in Machine Learning, 6, 2013, 145–373.
– reference: [17] Li, P., He, N., and Milenkovic, O., Quadratic decomposable submodular function minimization, Advances in Neural Information Processing Systems 31 (NeurIPS), 2018, 1414–1422.
– reference: [11] Fujishige, S., Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, 2nd edition, 2005.
– reference: [4] Agarwal, S., Lim, J., Z.-Manor, L., Perona, P., Kriegman D., and Belongie, S., Beyond pairwise clustering, in IEEE Conf. on Computer Vision and Pattern Recognition, 2005, 838–845.
– reference: [12] Ikeda, M., Miyauchi, A., Takai, Y., and Yoshida, Y., Finding Cheeger cuts in hypergraphs via heat equation, arXiv:1809.04396.
– reference: [26] Yoshida, Y., Nonlinear Laplacian for digraphs and its applications to network analysis, in Proceedings of the 9th ACM International Conference on Web Search and Data Mining (WSDM) 2016, 483–492.
– reference: [10] Fujii, K., Soma, T., and Yoshida, Y., Polynomial-time algorithms for submodular Laplacian system, arXiv: 1803.10923.
– reference: [28] Zhou, D., Huang, J., and Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Advances in Neural Information in Processing Systems 20 (NIPS) 2007, 1601–1608.
– reference: [29] Zien, J. Y., Schlag, M. D. F., and Chan, P. K., Multilevel spectral hypergraph partitionaing with arbitrary vertex sizes, IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9, 1999, 1389–1399.
– reference: [3] Andersen, R., Chung, F., and Lang, K., Using PageRank to locally partition a graph, Internet Mathematics, 4 (2007), 35–64.
– reference: [20] Louis, A., Hypergraph markov operators, eigenvalues and approximation algorithms, in Proceedings of the 47 annual ACM symposium on Theory of Computing (STOC), 2015, 713–722.
– reference: [14] Kwok, T. C., Lau, L. C., Lee, Y. T., Oveis Charan S., and Trevisan, L., Improved Cheegerʼs inequality: analysis of spectral partitioning algorithms through higher order spectral gap, in Proceedings of the 45 annual ACM symposium on Theory of Computing (STOC), 2013, 11–20.
– reference: [18] Li, P., and Milenkovic, O., Submodular hypergraphs: p-Laplacians, Cheeger inequalities and spectral clustering, in Proceedings of Machine Learning Research, 2018, 3014–3023.
– reference: [8] Chung, F., Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1–19.
– reference: [9] Chung, F., The heat kernel as the pagerank of a graph, in Proceedings of the National Academy of Sciences of the United States of America, 104 (2007), 19735–19740.
– reference: [15] Komura, Y., Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493–507.
– reference: [1] Alon, N., Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96.
– reference: [6] Bauer, F., Normalized graph Laplacians for directed graphs, Linear Algebra and its Applications, 436, 2012, 4193–4222.
– reference: [19] Li, Y., and Zhang, Z.-L., Digraph Laplacian and the degree of asymmetry, Internet Mathematics, 8 (2012), 381–401.
– reference: [2] Alon, N., and Milman, V. D., λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory, Series B, 38 (1985), 73–88.
SSID ssj0003306486
ssib025294388
Score 1.8653336
SourceID jstage
SourceType Publisher
StartPage 2
Title ハイパーグラフ上の熱とそのネットワーク解析への応用
URI https://www.jstage.jst.go.jp/article/bjsiam/31/2/31_2/_article/-char/ja
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 応用数理, 2021/06/24, Vol.31(2), pp.2-10
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  databaseCode: KQ8
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  eissn: 2432-1982
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0003306486
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxcKn14kUUFb_pwRy3bj43Oe6-t49iQRBa7G3ZT-gDq-jrxdvrgoggKuhNvShYL1ZvPQj-mKj1ZzjJZt97tYK17BKGyezMJBM2M2GSeN61vA5qjPPap1WW-azipS9LVvu4VELhuuLwmGyLm2Jpld1Y42tzx27PZC1tjvLF4uFf95UcxaqAA7uaXbL_YdkJU0AADPaFEiwM5aFsjBKKJLwDCxAUMYdR2AFxz1XFgcNEqqPhKGEolkhGFoNRlKAkRFKgGHcY6QDVn6FphfY7gHaA7EQM_pRuMBJFIYqAWCCVIBU4hrGc4cxRPECqZ9RQDKTPus4Hay0rbpsWGoZysspoaqARUeBogQSGksFGfasDN7q1F1N3ax7E5maR6Zpn1z2B0R0aF1nJ0Mex1VTFrjXxpC8jeK0UBXTcAj372b81NzRGN2EZgW7uWFb7jyaMEh8ruW9CcdPa-kxc72aHGTejTeY9OIGBBw3DLh8-WM_uLFK8SFIynaonCZRuyKUtXUpxStqiqzB79tIhBA7HSSiEudpj-dbkR0s4UYy6c-qMy0JNHCqFO9TU6HB9nwbgng0hWOkSHa3vtXLKO-mCpoWolXramxtmZ7xl3TzTW-9180I3X_XWZ9181M2r77tP9PjT3qMverytx28A1s1T3TS6eaybHUu58-vDu59vn-vxLtT--PZ67-X2WW91kKz0lnx3NYg_JAQGAwMvXxWlzHhIaF2SqioqwTCuwCPOc1HKsKRBSWUgaiZrFqgyz4ICwm-hQlkJTs958xt3N6rz3gLPijzLRMHDULKCZHnFZBUCBkuJa4oveGHb9vRee_5LetjOv3jkLy95J6bD_rI3P7q_WV0B53eUX7WG_A1ejJXp
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%8F%E3%82%A4%E3%83%91%E3%83%BC%E3%82%B0%E3%83%A9%E3%83%95%E4%B8%8A%E3%81%AE%E7%86%B1%E3%81%A8%E3%81%9D%E3%81%AE%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E8%A7%A3%E6%9E%90%E3%81%B8%E3%81%AE%E5%BF%9C%E7%94%A8&rft.jtitle=%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86&rft.au=%E6%B1%A0%E7%94%B0%2C+%E6%AD%A3%E5%BC%98&rft.date=2021-06-24&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86%E5%AD%A6%E4%BC%9A&rft.eissn=2432-1982&rft.volume=31&rft.issue=2&rft.spage=2&rft.epage=10&rft_id=info:doi/10.11540%2Fbjsiam.31.2_2&rft.externalDocID=article_bjsiam_31_2_31_2_article_char_ja