Deep learningによる口内法X線画像の自動分類

Saved in:
Bibliographic Details
Published in歯科放射線 Vol. 60; no. 2; pp. 53 - 57
Main Authors 森, 瑞穂, 勝又, 明敏, 小日向, 清美, 西山, 航, 北野, 倫哉, 藤田, 広志, 飯田, 幸弘
Format Journal Article
LanguageJapanese
Published 特定非営利活動法人 日本歯科放射線学会 2021
Subjects
Online AccessGet full text
ISSN0389-9705
2185-6311
DOI10.11242/dentalradiology.60.53

Cover

Author 飯田, 幸弘
勝又, 明敏
小日向, 清美
北野, 倫哉
藤田, 広志
西山, 航
森, 瑞穂
Author_xml – sequence: 1
  fullname: 森, 瑞穂
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
– sequence: 1
  fullname: 勝又, 明敏
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
– sequence: 1
  fullname: 小日向, 清美
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
– sequence: 1
  fullname: 西山, 航
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
– sequence: 1
  fullname: 北野, 倫哉
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
– sequence: 1
  fullname: 藤田, 広志
  organization: 岐阜大学工学部
– sequence: 1
  fullname: 飯田, 幸弘
  organization: 朝日大学歯学部口腔病態医療学講座歯科放射線学分野
BookMark eNpdjz9Lw0AYhw-pYK39CuIXSLy7997cZZT6p0LBRcEtXJJLTYlpSbJ0bMW20KGLXRwEcVNwcXDw44RY_RYiioPL71keHvhtklraTw0h24zajHHBd0OTFjrJdBj3k353aDvURlgjdc4UWg4wViN1Csq1XElxgzTzPPYplQoEFW6dqH1jBjuJ0Vkap91y9FSOZ-V4Xi0eqsn1-8vyfPV6u7p5q64W5ej5Y_pYzZfVbPJ5f7dF1iOd5Kb5ywY5Ozw4bbWtzsnRcWuvY_U449oCF7hRMmDoSwiEL41yVQRSKImhoCgpRQEoEFFKGYCJWCiVcX2l0YkMQoO0f7q9vNBd4w2y-FJnQ09nRRwkxvv333Oox78H4U8JLnTm9TR8AahZalQ
ContentType Journal Article
Copyright 2021 特定非営利活動法人 日本歯科放射線学会
Copyright_xml – notice: 2021 特定非営利活動法人 日本歯科放射線学会
DOI 10.11242/dentalradiology.60.53
DeliveryMethod fulltext_linktorsrc
EISSN 2185-6311
EndPage 57
ExternalDocumentID article_dentalradiology_60_2_60_53_article_char_ja
GroupedDBID 2WC
ABJNI
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
MOJWN
OK1
RJT
ID FETCH-LOGICAL-j212a-3932e87c15b73c4b7e898f374875d40570054354555777c3ef1d78e9b8a56fe53
ISSN 0389-9705
IngestDate Wed Sep 03 06:31:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j212a-3932e87c15b73c4b7e898f374875d40570054354555777c3ef1d78e9b8a56fe53
OpenAccessLink https://www.jstage.jst.go.jp/article/dentalradiology/60/2/60_53/_article/-char/ja
PageCount 5
ParticipantIDs jstage_primary_article_dentalradiology_60_2_60_53_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 歯科放射線
PublicationTitleAlternate 歯科放射線
PublicationYear 2021
Publisher 特定非営利活動法人 日本歯科放射線学会
Publisher_xml – name: 特定非営利活動法人 日本歯科放射線学会
References 15. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko BB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacal Radiology. 2019;48(4):20180051.
4. 勝又明敏,早川吉彦,杉原義人,木下 豪,坂本 博,玉川裕夫,青木孝文,江島堅一郎,新井嘉則.歯科におけるDICOMと歯科医療情報標準化の展開.歯科放射線.2017;56(2):97-106.
13. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, Kise Y, Nozawa M, Katsumata A, Fujita H, Ariji E. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiology. 2019;35(3):301-307.
12. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(4):424-430.
2. 有田正博,西田郁子,吉野賢一,中村恵子,小城辰郎,北村知昭,木尾哲朗,大住伴子,坂本英治,庄野庸雄,黒川英雄,安細敏弘,一田利道,佐藤耕一,篠原雄二,瀬田祐司,園木一男,芳賀健輔,村田貴俊,林田 裕,横田 誠,寺下正道,西原達次.九州歯科大学におけるOSCEトライアルの評価.九州歯科学会雑誌.2004:58(6);213-222.
8. Sanjeev BK, Ali Al-ehaideb, Prabhadevi CM, Satish VS, Hosam AB, Sachin CS, Shilpa B. Developments, application, and performance of artificial intelligence in dentistry-A systematic review. Journal of Dental Sciences. 2020;published online.
6. DICOM standard CP 1444 Parts 3, 6, 17. Add additional dental view sets to Structured Display. ftp://medical.nema.org/medical/dicom/final/cp1444_ft.pdf
11. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiology. 2019;published online.
5. 日本歯科放射線学会:日本歯科放射線学会規格.口内法撮影X線画像の画像配置,JSOMR X-0001;2015.
10. Kise Y, Shimizu M, Ikeda H, Fujii T, Kuwada C, Nishiyama M, Funakoshi T, Ariji Y, Fujita H, Katsumata A, Yoshiura K, Ariji E. Usefulness of a deep learning system for diagnosing Sjögren’s syndrome using ultrasonography images. Dentomaxillofac Radiology. 2020;49(3):published online.
16. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Scientific Report. 2019;9(1):3840.
1. 有地榮一郎,勝又明敏,小林 馨,櫻井 孝,藤田広志,本田和也,編.デジタルデンティストリー 医療情報とデジタル画像超入門.第1版.京都:永末書店;2015:p.54-70
14. Zhang K, Wu KJ, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Computerized Medical Imaging and Graphics. 2018;68:61-70.
3. Iwasaki H, Honda E, Nishitani H, Takahashi H, Yamamoto Y, Ooguro T, Tanaka K. Hanging protocol and viewers for a dental full picture archiving and communication system (PACS). Dentomaxillofac Radiol. 2007;36(5):285-295.
9. Muramatsu C, Morishita T, Takahashi R, Hayashi T, Nishiyama W, Ariji Y, Zhou X, Hara T, Katsumata A, Ariji E, Fujita H. Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiology. 2020;published online.
7. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep Convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1-9.
References_xml – reference: 6. DICOM standard CP 1444 Parts 3, 6, 17. Add additional dental view sets to Structured Display. ftp://medical.nema.org/medical/dicom/final/cp1444_ft.pdf
– reference: 10. Kise Y, Shimizu M, Ikeda H, Fujii T, Kuwada C, Nishiyama M, Funakoshi T, Ariji Y, Fujita H, Katsumata A, Yoshiura K, Ariji E. Usefulness of a deep learning system for diagnosing Sjögren’s syndrome using ultrasonography images. Dentomaxillofac Radiology. 2020;49(3):published online.
– reference: 13. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, Kise Y, Nozawa M, Katsumata A, Fujita H, Ariji E. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiology. 2019;35(3):301-307.
– reference: 15. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko BB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacal Radiology. 2019;48(4):20180051.
– reference: 1. 有地榮一郎,勝又明敏,小林 馨,櫻井 孝,藤田広志,本田和也,編.デジタルデンティストリー 医療情報とデジタル画像超入門.第1版.京都:永末書店;2015:p.54-70.
– reference: 4. 勝又明敏,早川吉彦,杉原義人,木下 豪,坂本 博,玉川裕夫,青木孝文,江島堅一郎,新井嘉則.歯科におけるDICOMと歯科医療情報標準化の展開.歯科放射線.2017;56(2):97-106.
– reference: 12. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(4):424-430.
– reference: 3. Iwasaki H, Honda E, Nishitani H, Takahashi H, Yamamoto Y, Ooguro T, Tanaka K. Hanging protocol and viewers for a dental full picture archiving and communication system (PACS). Dentomaxillofac Radiol. 2007;36(5):285-295.
– reference: 8. Sanjeev BK, Ali Al-ehaideb, Prabhadevi CM, Satish VS, Hosam AB, Sachin CS, Shilpa B. Developments, application, and performance of artificial intelligence in dentistry-A systematic review. Journal of Dental Sciences. 2020;published online.
– reference: 9. Muramatsu C, Morishita T, Takahashi R, Hayashi T, Nishiyama W, Ariji Y, Zhou X, Hara T, Katsumata A, Ariji E, Fujita H. Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiology. 2020;published online.
– reference: 2. 有田正博,西田郁子,吉野賢一,中村恵子,小城辰郎,北村知昭,木尾哲朗,大住伴子,坂本英治,庄野庸雄,黒川英雄,安細敏弘,一田利道,佐藤耕一,篠原雄二,瀬田祐司,園木一男,芳賀健輔,村田貴俊,林田 裕,横田 誠,寺下正道,西原達次.九州歯科大学におけるOSCEトライアルの評価.九州歯科学会雑誌.2004:58(6);213-222.
– reference: 16. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Scientific Report. 2019;9(1):3840.
– reference: 5. 日本歯科放射線学会:日本歯科放射線学会規格.口内法撮影X線画像の画像配置,JSOMR X-0001;2015.
– reference: 14. Zhang K, Wu KJ, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Computerized Medical Imaging and Graphics. 2018;68:61-70.
– reference: 7. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep Convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1-9.
– reference: 11. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiology. 2019;published online.
SSID ssib007834049
ssj0058250
ssib000872104
Score 2.2534301
SourceID jstage
SourceType Publisher
StartPage 53
SubjectTerms 分類
口内法X線画像
深層学習
解剖学的部位
Title Deep learningによる口内法X線画像の自動分類
URI https://www.jstage.jst.go.jp/article/dentalradiology/60/2/60_53/_article/-char/ja
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 歯科放射線, 2021, Vol.60(2), pp.53-57
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2185-6311
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0058250
  issn: 0389-9705
  databaseCode: KQ8
  dateStart: 19600101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxQxFB9qvXgRRcX_7MGcZNaZyWSSHDO7WYqgILSwt2H-rbCHWsr20lsr1kIPvdiLB0G8KXjx4MHv4RdY1uq38L0ksztqD64Iw_DIvPfLy3sT8l5mknjevYpWQczz0pcxK3yIb0e-gLDWL3jIcl7QMjf7bD96nKxtxA-HbLhy7mvrr6WdSdEtd89cV_IvXoUy8Cuukl3Cs3NQKAAa_At38DDc_8rH_breas59eEo0hbCQqNQQERGiIaCEETEgihoiIYIRnZCUEsmGRHOSciIVEjImqeWmKOAQNdGCCE6UMo9SEDOEQCwtiQqJ1O0oF9FVn6gBYiqADbEEwTUKpgER8bzexuVGiGJt4HWjDMIaBElEtGCzKvRdo0ALww_4oI82BD5o82OFA_MEwIzuMkB4J5gKYxGO6gm9EBTInA4MQoiX4RdYpVLt6ZJoMVGCMEKSVKIUtAXtKlFbaZouobbEGQ-ahZXPTW7t6vxCNJQruO639AaiR1RvKfMaPYA5MYi9xuBuMZuQvuSB_eBfmzIIxpifUDc2ucHLHsbgOmnUGonsFswuprF7gP85WkJ8Bu94ZRbebueVXSDVTYJuI_3LTuTuPc9-48-SIIvwxmjWsOCSwWwMecv5iEMEiD9LPGmH_TxqTwPgYS_ma6-NoJiIzMnKcyO4lf2o7oMzlYXwcQzJVPMjpokN1y95F11S11FWrcveyji_4gnsnZ2md073Pkz3D6f7R7Pjd7ODF98-nQxPP78-ffVl9vx4uvfx-8v3s6OT2eHBj7dvrnobA73eW_PdOSX-GAK_3KeQA9WClyErOC3jgtdCihHu68RZhQkR5kUUUhXGOOclrUdhxUUtC5GzZFQzes1b3Xy2WV_3OlVQhRGghEXN4opGIoeEoYawPo8CViSjG56yDc227GY02fJOufkfMG55F7Bz2bnI297qZHunvgPR-aS4a1z9E07ZuKY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning%E3%81%AB%E3%82%88%E3%82%8B%E5%8F%A3%E5%86%85%E6%B3%95X%E7%B7%9A%E7%94%BB%E5%83%8F%E3%81%AE%E8%87%AA%E5%8B%95%E5%88%86%E9%A1%9E&rft.jtitle=%E6%AD%AF%E7%A7%91%E6%94%BE%E5%B0%84%E7%B7%9A&rft.au=%E6%A3%AE%2C+%E7%91%9E%E7%A9%82&rft.au=%E5%8B%9D%E5%8F%88%2C+%E6%98%8E%E6%95%8F&rft.au=%E5%B0%8F%E6%97%A5%E5%90%91%2C+%E6%B8%85%E7%BE%8E&rft.au=%E8%A5%BF%E5%B1%B1%2C+%E8%88%AA&rft.date=2021&rft.pub=%E7%89%B9%E5%AE%9A%E9%9D%9E%E5%96%B6%E5%88%A9%E6%B4%BB%E5%8B%95%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%AD%AF%E7%A7%91%E6%94%BE%E5%B0%84%E7%B7%9A%E5%AD%A6%E4%BC%9A&rft.issn=0389-9705&rft.eissn=2185-6311&rft.volume=60&rft.issue=2&rft.spage=53&rft.epage=57&rft_id=info:doi/10.11242%2Fdentalradiology.60.53&rft.externalDocID=article_dentalradiology_60_2_60_53_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-9705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-9705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-9705&client=summon