DNBとBTデータを用いたANNによる漁火検出モデルについて

Saved in:
Bibliographic Details
Published in写真測量とリモートセンシング Vol. 58; no. 1; pp. 4 - 13
Main Authors 長谷川, 大輔, 朴, 鍾杰, マッキン, ケネス ジェームス, 山口, 崇志, 浅沼, 市男
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本写真測量学会 2019
Online AccessGet full text
ISSN0285-5844
1883-9061
DOI10.4287/jsprs.58.4

Cover

Author 長谷川, 大輔
朴, 鍾杰
山口, 崇志
浅沼, 市男
マッキン, ケネス ジェームス
Author_xml – sequence: 1
  fullname: 長谷川, 大輔
  organization: 東京情報大学
– sequence: 1
  fullname: 朴, 鍾杰
  organization: 東京情報大学
– sequence: 1
  fullname: マッキン, ケネス ジェームス
  organization: 東京情報大学
– sequence: 1
  fullname: 山口, 崇志
  organization: 東京情報大学
– sequence: 1
  fullname: 浅沼, 市男
  organization: 東京情報大学
BookMark eNo9kM1Kw0AUhQepYK3d-B6p85vMLFy09Z8SN3UdJpOJNtRakm5cTipUcCcuBUGKFPIGUvBhBtvXMI3i5lw45-Pey9kFtdHdSAOwj2CLYu4dJNk4zVqMt-gWqCPOiSOgi2qgDjFnDuOU7oBmlg1CiCH1MBekDi6O_I41i07fTmd2urT5l82f1y8Lax6seWv7vjWFzR9t_rRamrUpVvPX79mnnb5XfLFJzbyCP_bAdiyHmW7-zQa4Ojnud8-c3uXpebfdc5LyrHCQFETEOtZaY6lcgSIdK1l-W2roESZcBYnCEVPcCwliTEEcURdGnMYxxog0wOHv3iSbyGsdjNPBrUzvA5lOBmqog6qGgPEAbYT---pGpkEiyQ-VO3Bl
ContentType Journal Article
Copyright 2019 一般社団法人 日本写真測量学会
Copyright_xml – notice: 2019 一般社団法人 日本写真測量学会
DOI 10.4287/jsprs.58.4
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1883-9061
EndPage 13
ExternalDocumentID article_jsprs_58_1_58_4_article_char_ja
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
~02
ID FETCH-LOGICAL-j2049-1a939fefeee2ac691defca883fcab73596c03c2d5c87b3155c02d460d84ff2213
ISSN 0285-5844
IngestDate Wed Sep 03 06:04:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2049-1a939fefeee2ac691defca883fcab73596c03c2d5c87b3155c02d460d84ff2213
OpenAccessLink https://www.jstage.jst.go.jp/article/jsprs/58/1/58_4/_article/-char/ja
PageCount 10
ParticipantIDs jstage_primary_article_jsprs_58_1_58_4_article_char_ja
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle 写真測量とリモートセンシング
PublicationTitleAlternate 写真測量とリモートセンシング
PublicationYear 2019
Publisher 一般社団法人 日本写真測量学会
Publisher_xml – name: 一般社団法人 日本写真測量学会
References 5) CEARAC, 2005. Integrated Report on Ocean Remote Sensing for the NOWPAP Region, 50pp.
9) Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q., 2017. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens., 9(5), 498, 21pp, doi : 10.3390/rs9050498.
17) Straka, W.C., Seaman, C., Baugh, K., Cole, K., Stevens, E., Miller, S.D., 2015. Utilization of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band for Arctic Ship Tracking and Fisheries Management, Remote Sens., 7(1), pp. 971-989, doi : 10.3390/rs70100971.
6) Czyzowska-Wisniewski, E.H., van Leeuwen, W.J.D., Hirschboeck, K.K., Marsh, S.E., & Wisniewski, W.T., 2015. Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network, Remote Sensing of Environment, 156, pp. 403-417, doi : 10.1016/j.rse.2014.09.0262015.
18) Yuan, H., Yang, G., Li, C., Wang, Y., Liu, J., Yu, H., Feng, H., Xu, B., Zhao, X., Yang, X., 2017. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing : Analysis of RF, ANN, and SVM Regression Models, Remote Sens., 9(4), 309, 14pp, doi : 10.3390/rs9040309.
7) Dang T.N., 2012. Fisheries Co-operation in the South China Sea and the (Ir) relevance of the Sovereignty Question, Asian Journal of International Law, 2(1), pp. 59-88.
14) Muallil, R.N., Mamauag, S.S., Cababaro, J.T., Arceo, H.O., and Alino, P.M., 2014. Catch trends in Philippine small-scale fisheries over the last five decades : The Fishers'perspective, Marine Policy, 47, pp. 110-117.
1) 浅沼市男,2013.Visible Infrared Imaging Radiometer Suits(VIIRS)による漁火観測,写真測量とリモートセンシング52(3),pp. 106-107
3) Albu, R-D., 2009. Human Face Recognition Using Convolutional Neural Networks, Journal of Electrical and Electronics Engineering 2(2), pp. 110-113.
11) LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324.
4) Asanuma, I., T. Yamaguchi, J.G. Park, K. Mackin, J. Mittleman., 2017. Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea, International Science Index International Journal of Computer, Electrical, Automation, Control and Information Engineering, 11(2), pp. 252-255.
10) Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is the best multi-stage architecture for object recognition? In ICCV, pp. 2146-2153, doi : 10.1109/ICCV.2009.5459469.
15) Nesterov, Y., 1983. A method of solving a convex programming problem with convergence rate O(1/k2), Soviet Mathematics Doklady, 27(2), pp. 372-376.
16) Rosenberg, D., 1999. Environmental Pollution around the South China Sea : Developing a Regional Response to a regional problem Series : Resource Management in Asia-Pacific Working Paper, 20, doi : 10.1355/C521-1F.
8) Elvidge, C.D., Zhizhin, M., Baugh, K., Hsu, F.C., 2015. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens., 7(3), pp. 3020-3036, doi : 10.3390/rs70303020.
13) Meeus, J., 1998. Astronomical algorithms (2nd ed.), Willmann-Bell, Richmond, 477pp.
12) Liu, Y., Zhong, Y., Fei, F., Zhu, Q., Qin, Q., 2018. Scene Classification Based on a Deep Random-Scale Stretched Convolutional Neural Network. Remote Sens., 10(3), 444, 23pp, doi : 10.3390/rs10030444.
2) 山田陽巳,2015.東シナ海・黄海の漁業資源(総説),水産庁・水産総合研究センター,平成26年度国際漁業資源の現況,63,pp. 1-6
References_xml – reference: 7) Dang T.N., 2012. Fisheries Co-operation in the South China Sea and the (Ir) relevance of the Sovereignty Question, Asian Journal of International Law, 2(1), pp. 59-88.
– reference: 4) Asanuma, I., T. Yamaguchi, J.G. Park, K. Mackin, J. Mittleman., 2017. Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea, International Science Index International Journal of Computer, Electrical, Automation, Control and Information Engineering, 11(2), pp. 252-255.
– reference: 6) Czyzowska-Wisniewski, E.H., van Leeuwen, W.J.D., Hirschboeck, K.K., Marsh, S.E., & Wisniewski, W.T., 2015. Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network, Remote Sensing of Environment, 156, pp. 403-417, doi : 10.1016/j.rse.2014.09.0262015.
– reference: 17) Straka, W.C., Seaman, C., Baugh, K., Cole, K., Stevens, E., Miller, S.D., 2015. Utilization of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band for Arctic Ship Tracking and Fisheries Management, Remote Sens., 7(1), pp. 971-989, doi : 10.3390/rs70100971.
– reference: 10) Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is the best multi-stage architecture for object recognition? In ICCV, pp. 2146-2153, doi : 10.1109/ICCV.2009.5459469.
– reference: 13) Meeus, J., 1998. Astronomical algorithms (2nd ed.), Willmann-Bell, Richmond, 477pp.
– reference: 18) Yuan, H., Yang, G., Li, C., Wang, Y., Liu, J., Yu, H., Feng, H., Xu, B., Zhao, X., Yang, X., 2017. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing : Analysis of RF, ANN, and SVM Regression Models, Remote Sens., 9(4), 309, 14pp, doi : 10.3390/rs9040309.
– reference: 9) Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q., 2017. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens., 9(5), 498, 21pp, doi : 10.3390/rs9050498.
– reference: 16) Rosenberg, D., 1999. Environmental Pollution around the South China Sea : Developing a Regional Response to a regional problem Series : Resource Management in Asia-Pacific Working Paper, 20, doi : 10.1355/C521-1F.
– reference: 1) 浅沼市男,2013.Visible Infrared Imaging Radiometer Suits(VIIRS)による漁火観測,写真測量とリモートセンシング52(3),pp. 106-107.
– reference: 14) Muallil, R.N., Mamauag, S.S., Cababaro, J.T., Arceo, H.O., and Alino, P.M., 2014. Catch trends in Philippine small-scale fisheries over the last five decades : The Fishers'perspective, Marine Policy, 47, pp. 110-117.
– reference: 3) Albu, R-D., 2009. Human Face Recognition Using Convolutional Neural Networks, Journal of Electrical and Electronics Engineering 2(2), pp. 110-113.
– reference: 12) Liu, Y., Zhong, Y., Fei, F., Zhu, Q., Qin, Q., 2018. Scene Classification Based on a Deep Random-Scale Stretched Convolutional Neural Network. Remote Sens., 10(3), 444, 23pp, doi : 10.3390/rs10030444.
– reference: 5) CEARAC, 2005. Integrated Report on Ocean Remote Sensing for the NOWPAP Region, 50pp.
– reference: 15) Nesterov, Y., 1983. A method of solving a convex programming problem with convergence rate O(1/k2), Soviet Mathematics Doklady, 27(2), pp. 372-376.
– reference: 2) 山田陽巳,2015.東シナ海・黄海の漁業資源(総説),水産庁・水産総合研究センター,平成26年度国際漁業資源の現況,63,pp. 1-6.
– reference: 8) Elvidge, C.D., Zhizhin, M., Baugh, K., Hsu, F.C., 2015. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens., 7(3), pp. 3020-3036, doi : 10.3390/rs70303020.
– reference: 11) LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324.
SSID ssib020472893
ssib036263174
ssib004305393
ssj0000400259
ssib031741132
Score 2.171052
SourceID jstage
SourceType Publisher
StartPage 4
Title DNBとBTデータを用いたANNによる漁火検出モデルについて
URI https://www.jstage.jst.go.jp/article/jsprs/58/1/58_4/_article/-char/ja
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 写真測量とリモートセンシング, 2019, Vol.58(1), pp.4-13
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-9061
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000400259
  issn: 0285-5844
  databaseCode: KQ8
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3Latww0IT00h5Kn_RNDtWpOLUtyZaO8j4IgS4UNiU3s_ba0D2kIZtceineFFLorfRYKJRQAvmDEujHmCa_0RnJWjubHtKAMfJoNE_bM-OVtI7zfDSKIHLI1I28FAoUP4rcFBfneCktJK6czLSnXw3CtQ22vsk3l5Y_tGYt7e2mq9n7f64ruYpXAQZ-xVWy_-HZOVEAQBv8C2fwMJwv5ePuICY9CskgUSIe6iYcUd2IO7oRkLhfN2RAehGRDNDrcYLVDdlXg4ElFtf4QtgGQEIkCL1AocYJiWJEAheOTGNV81XBoiQqPk_Zx4ELAqiwnSdrmiGRUgvcAfG0AIIoYCeRsujPVbdcLghQW4A2isSx7aIWEl2AzH_BQVaSaxQBYN3Ql7KLtyZegCLKdIOQrBkYotQxM2ggcJfEPQ3tnqOvOcueFdOKoLqNUJqCEcy3eF0LkfM-q6GKFpVX3hy7YcyRGhLkaElFrT4gsjBa9omZ0my_CbViDukxZCg8VFwYp0RoCtSRExkjQfQXRfMhsoLjhdYf8HhtHtW5nJs52kOFmhDgqFbwCgR3Ibk1hs9NcBWCutIzm-_b6MvFhbeMCaWslZOZ5cqL0R6rfYz20-2d6SoXq6zJaeYzTetnM9FICReJjyeWWDiubUwmUGBdCyJIVXFWx-v2_ncQo5oAFuDWqq3NmiD3Zr7fLMzWWzv5dT2lU0GGNYUuwa09zBbJKPrLRnBIfydQDNqJpDq3Hd5ybtZF6Yoy0t52liajO86NN2-newY6veusw7umKo_iYbV_UO2fVLPf1ezL2dejqvxYld_h3VGVx9XsUzX7fHpSnpXHp4ff_hz8qvZ_aPxj7C0PNfLPe85GvzfsrLn1_7C4E9BYuv5IUlnkRZ7nwSgLpT_Oi2wEzoRzGlEuw8yjWTDmmYhSCgVK5gVjFnpjwYoiCHx631neereVP3BWGGQUGRVgyjxnPB9LmkLKkQsvKwoYRh86oTFEsm0220ku6cBHVx342LmOT5D5qvrEWd7d2cufQp2xmz7T98JfEhvg4A
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNB%E3%81%A8BT%E3%83%87%E3%83%BC%E3%82%BF%E3%82%92%E7%94%A8%E3%81%84%E3%81%9FANN%E3%81%AB%E3%82%88%E3%82%8B%E6%BC%81%E7%81%AB%E6%A4%9C%E5%87%BA%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6&rft.jtitle=%E5%86%99%E7%9C%9F%E6%B8%AC%E9%87%8F%E3%81%A8%E3%83%AA%E3%83%A2%E3%83%BC%E3%83%88%E3%82%BB%E3%83%B3%E3%82%B7%E3%83%B3%E3%82%B0&rft.au=%E9%95%B7%E8%B0%B7%E5%B7%9D%2C+%E5%A4%A7%E8%BC%94&rft.au=%E6%9C%B4%2C+%E9%8D%BE%E6%9D%B0&rft.au=%E3%83%9E%E3%83%83%E3%82%AD%E3%83%B3%2C+%E3%82%B1%E3%83%8D%E3%82%B9+%E3%82%B8%E3%82%A7%E3%83%BC%E3%83%A0%E3%82%B9&rft.au=%E5%B1%B1%E5%8F%A3%2C+%E5%B4%87%E5%BF%97&rft.date=2019&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%86%99%E7%9C%9F%E6%B8%AC%E9%87%8F%E5%AD%A6%E4%BC%9A&rft.issn=0285-5844&rft.eissn=1883-9061&rft.volume=58&rft.issue=1&rft.spage=4&rft.epage=13&rft_id=info:doi/10.4287%2Fjsprs.58.4&rft.externalDocID=article_jsprs_58_1_58_4_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0285-5844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0285-5844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0285-5844&client=summon