Fleming—Harringtonの重み付き log-rank検定と境界内平均生存時間の差の検定における必要被験者数と情報分数

Saved in:
Bibliographic Details
Published in計量生物学 Vol. 45; no. 2; pp. 247 - 268
Main Author 長谷川, 貴大
Format Journal Article
LanguageJapanese
Published 日本計量生物学会 30.11.2024
Online AccessGet full text
ISSN0918-4430
2185-6494
DOI10.5691/jjb.45.247

Cover

Author 長谷川, 貴大
Author_xml – sequence: 1
  fullname: 長谷川, 貴大
  organization: 塩野義製薬株式会社 解析センター
BookMark eNo9UM1KAlEYvYRBZm56gl5g7M69d_4WLUIyA6FNrYc744w5jWOMbto5ihqli1DDoigkQpCkaBHRwndpuqO-RUN_3-J85zuc7yzOMog4RccAYJWHCUFU-HXL0hJESCAiLYAo4mWBE4lCIiAKFV7mCMFwCcRLJQuGI0KMFSkKWinbKOSd3Eelm6auG7Jy0fG98bzZ9r3J53vf99prdjHHudQ5DO6v2fjK94ZsUJv2WqxRZ28v7KY57d6yx35wWZ1fdMJf9joO8c888r1T3zv3q2dsUp89eLPBaD7szCr1oPcURgW1Ort7ZieN8FwBiya1S0b8d8fAfmprL5nmMrvbO8nNDGchSDCnaVQzRUUWsIwlinRDFzE2TGTqvJTFGPNE0QnMCoYkUVlAUEO6BHWNN0UkyFA0cQxs_ORapTLNGeqRmy9Q91ilbjmv24YaFqkSQUXfQKR_XT-grmpR_AUM8ph5
ContentType Journal Article
Copyright 2024 日本計量生物学会
Copyright_xml – notice: 2024 日本計量生物学会
DOI 10.5691/jjb.45.247
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2185-6494
EndPage 268
ExternalDocumentID article_jjb_45_2_45_247_article_char_ja
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j2043-bbabf69853837a2cec633ef2fc17d333149c40d5e77a8520b2c70cb1f625806f3
ISSN 0918-4430
IngestDate Wed Sep 03 06:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2043-bbabf69853837a2cec633ef2fc17d333149c40d5e77a8520b2c70cb1f625806f3
OpenAccessLink https://www.jstage.jst.go.jp/article/jjb/45/2/45_247/_article/-char/ja
PageCount 22
ParticipantIDs jstage_primary_article_jjb_45_2_45_247_article_char_ja
PublicationCentury 2000
PublicationDate 2024/11/30
PublicationDateYYYYMMDD 2024-11-30
PublicationDate_xml – month: 11
  year: 2024
  text: 2024/11/30
  day: 30
PublicationDecade 2020
PublicationTitle 計量生物学
PublicationTitleAlternate 計量生物学
PublicationYear 2024
Publisher 日本計量生物学会
Publisher_xml – name: 日本計量生物学会
References ICH (2019). Addendum on estimands and sensitivity analysis in clinical trials to the guidance on statistical principles for clinical trials: E9(R1), Step 4.
Hasegawa, T. (2014). Sample size determination for the weighted log-rank test with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 13, 128-135.
Zhang, J. and Pulkstenis, E. (2016). Sample size and power of survival trials in group sequential design with delayed treatment effect. Statistics in Biopharmaceutical Research, 8, 268-275.
Martinez, R. L. M. C. and Naranjo, J. D. (2010). A pretest for choosing between logrank and wilcoxon tests in the two-sample problem. METRON, 68, 111-125.
Pocock, S. J. et al. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
Hasegawa, T. (2016). Group sequential monitoring based on the weighted log-rank test statistic with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 15, 412-419.
Chan, A. et al. (2016). Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology, 17, 367-377.
Uno, H. and Horiguchi, M. (2023). Ratio and difference of average hazard with survival weight: New measures to quantify survival benefit of new therapy. Statistics in Medicine, 42, 936-952.
Yotsuyanagi, H. et al. (2023). A phase 2/3 study of S-217622 in participants with SARS-CoV-2 infection (Phase 3 part). Medicine, 102, e33024.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. John Wiley & Sons, New York.
Tian, L. et al. (2020). On the empirical choice of the time window for restricted mean survival time. Biometrics, 76, 1157-1166.
Robert, C. et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372, 320-330.
Royston, P. and Parmar, M. K. (2013). Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Medical Research Methodology, 13, 152
Darilay, A. T. and Naranjo, J. D. (2011). A pretest for using logrank or Wilcoxon in the two-sample problem. Computational Statistics & Data Analysis, 55, 2400-2409.
Martinez, E. E. et al. (2017). Tests for equivalence of two survival functions: Alternative to the tests under proportional hazards. Statistical Methods in Medical Research, 26, 75-87.
Pak, K. et al. (2017). Interpretability of cancer clinical trial result using restricted mean survival time as an alternative to the hazard ratio. JAMA Oncology, 3, 1692-1696.
Xu, Z. et al. (2018). Designing cancer immunotherapy trials with random treatment time-lag effect. Statistics in Medicine, 37, 4589-4609.
Xu, J. et al. (2018). Results of a randomized, double-blind, placebo-controlled, phase III trial of trifluridine/tipiracil (TAS-102) monotherapy in Asian patients with previously treated metastatic colorectal cancer: the TERRA study. Journal of Clinical Oncology, 36, 350-358.
Lakatos, E. (1988). Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics, 44, 229-241.
Collett, D. (2015). Modelling Survival Data in Medical Research third edition. CRC Press, Boca Raton.
Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann-Whitney effect for right-censored and tied data. TEST, 27, 639-658.
Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics, 45, 497-507.
Horiguchi, M., Hassett, M. J. and Uno, H. (2020). Empirical power comparison of statistical tests in contemporary phase III randomized controlled trials with time-to-event outcomes in oncology. Clinical Trials, 17, 597-606.
Eaton, A., Therneau, T. and Le-Rademacher, J. (2020). Designing clinical trials with (restricted) mean survival time endpoint: Practical considerations. Clinical Trials, 17, 285-294.
Hayden, F. G. et al. (2018). Baloxavir marboxil for uncomplicated influenza in adults and adolescents. The New England Journal of Medicine, 379, 913-923.
Xu, Z. et al. (2017). Designing therapeutic cancer vaccine trials with delayed treatment effect. Statistics in Medicine, 36, 592-605.
Horiguchi, M. et al. (2019). How do the accrual pattern and follow-up duration affect the hazard ratio estimate when the proportional hazards assumption is violated? The Oncologist, 24, 867-871.
Luo, X. et al. (2019). Design and monitoring of survival trials in complex scenarios. Statistics in Medicine, 38, 192-209.
Guimarães, H. P. et al. (2020). Rivaroxaban in patients with atrial fibrillation and a bioprosthetic mitral valve. The New England Journal of Medicine, 383, 2117-2126.
福田武蔵,坂巻顕太郎,大庭幸治 (2023). 一般化ペアワイズ比較による生存時間解析. 日本統計学会誌,52, 319-354.
Uno, H. et al. (2015). A versatile test for equality of two survival functions based on weighted differences of Kaplan-Meier curves. Statistics in Medicine, 34, 3680-3695.
Roychoudhury, S. et al. (2021). Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross-pharma working group. Statistics in Biopharmaceutical Research, 15, 280-294.
Alexander, B. M. et al. (2018). Hazards of hazard ratios - deviations from model assumptions in immunotherapy [Letter to the editor]. The New England Journal of Medicine, 378, 1158-1159.
Hasegawa, T. et al. (2020). Restricted mean survival time as a summary measure of time-to-event outcome. Pharmaceutical Statistics, 19, 436-453.
Borghaei, H. et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. The New England Journal of Medicine, 373, 1627-1639.
Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data second edition. Springer-Verlag, New York.
Kundu, M. G. and Sarkar, J. (2021). On information fraction for Fleming-Harrington type weighted log-rank tests in a group-sequential clinical trial design. Statistics in Medicine, 40, 2321-2338.
Tsiatis, A. A. (1982). Repeated significance testing for a general class of statistics used in censored survival analysis. Journal of the American Statistical Association, 77, 855-861.
Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.
Pepe, M. S. and Fleming, T. R. (1991). Weighted Kaplan-Meier statistics: large sample and optimality considerations. Journal of the Royal Statistical Society Series B, 53, 341-352.
Korn, E. L. and Freidlin, B. (2018). Interim futility monitoring assessing immune therapies with a potentially delayed treatment effect. Journal of Clinical Oncology, 36, 2444-2449.
Lan, K. K., Rosenberger, W. F. and Lachin, J. M. (1995). Sequential monitoring of survival data with the Wilcoxon statistic. Biometrics, 51, 1175-1183.
Lan, K. K. and Zucker, D. M. (1993). Sequential monitoring of clinical trials: the role of information and Brownian motion. Statistics in Medicine, 12, 753-765.
ICH (1998). Statistical principles for clinical trials: E9, Step 5.
Lu, Y. and Tian, L. (2021). Statistical considerations for sequential analysis of the restricted mean survival time for randomized clinical trials. Statistics in Biopharmaceutical Research, 13, 210-218.
Murray, S. and Tsiatis, A. A. (1999). Sequential methods for comparing years of life saved in the two-sample censored data problem. Biometrics, 55, 1085-1092.
Yung, G. and Liu, Y. (2020). Sample size and power for the weighted log-rank test and Kaplan-Meier based tests with allowance for nonproportional hazards. Biometrics, 76, 939-950.
Rajkumar, S. et al. (2010). Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. The Lancet Oncology, 11, 29-37.
丹後俊郎 (2018). 新版 無作為化比較試験– デザインと統計解析– (医学統計学シリーズ5). 朝倉書店
Lee, S. H. (2007). On the versatility of the combination of the weighted log-rank statistics. Computational Statistics & Data Analysis, 51, 6557-6564.
Zhang, D. and Quan, H. (2009). Power and sample size calculation for log-rank test with a time lag in treatment effect. Statistics in Medicine, 28, 864-879.
Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. Statistics in Medicine, 29, 3245-3257.
Slud, E. V. and Wei, L. J. (1982). Two-sample repeated significance tests based on the modified Wilcoxon statistics. Journal of the American Statistical Association, 77, 862-868.
Mukhopadhyay, P. et al. (2020). Statistical and practical considerations in designing of immuno-oncology trials. Journal of Biopharmaceutical Statistics, 30, 1130-1146.
References_xml – reference: Borghaei, H. et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. The New England Journal of Medicine, 373, 1627-1639.
– reference: Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.
– reference: Pak, K. et al. (2017). Interpretability of cancer clinical trial result using restricted mean survival time as an alternative to the hazard ratio. JAMA Oncology, 3, 1692-1696.
– reference: Xu, Z. et al. (2017). Designing therapeutic cancer vaccine trials with delayed treatment effect. Statistics in Medicine, 36, 592-605.
– reference: Horiguchi, M., Hassett, M. J. and Uno, H. (2020). Empirical power comparison of statistical tests in contemporary phase III randomized controlled trials with time-to-event outcomes in oncology. Clinical Trials, 17, 597-606.
– reference: Hayden, F. G. et al. (2018). Baloxavir marboxil for uncomplicated influenza in adults and adolescents. The New England Journal of Medicine, 379, 913-923.
– reference: Lakatos, E. (1988). Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics, 44, 229-241.
– reference: Royston, P. and Parmar, M. K. (2013). Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Medical Research Methodology, 13, 152
– reference: Lee, S. H. (2007). On the versatility of the combination of the weighted log-rank statistics. Computational Statistics & Data Analysis, 51, 6557-6564.
– reference: Pepe, M. S. and Fleming, T. R. (1991). Weighted Kaplan-Meier statistics: large sample and optimality considerations. Journal of the Royal Statistical Society Series B, 53, 341-352.
– reference: 丹後俊郎 (2018). 新版 無作為化比較試験– デザインと統計解析– (医学統計学シリーズ5). 朝倉書店.
– reference: 福田武蔵,坂巻顕太郎,大庭幸治 (2023). 一般化ペアワイズ比較による生存時間解析. 日本統計学会誌,52, 319-354.
– reference: Guimarães, H. P. et al. (2020). Rivaroxaban in patients with atrial fibrillation and a bioprosthetic mitral valve. The New England Journal of Medicine, 383, 2117-2126.
– reference: Mukhopadhyay, P. et al. (2020). Statistical and practical considerations in designing of immuno-oncology trials. Journal of Biopharmaceutical Statistics, 30, 1130-1146.
– reference: Darilay, A. T. and Naranjo, J. D. (2011). A pretest for using logrank or Wilcoxon in the two-sample problem. Computational Statistics & Data Analysis, 55, 2400-2409.
– reference: Yung, G. and Liu, Y. (2020). Sample size and power for the weighted log-rank test and Kaplan-Meier based tests with allowance for nonproportional hazards. Biometrics, 76, 939-950.
– reference: Lan, K. K., Rosenberger, W. F. and Lachin, J. M. (1995). Sequential monitoring of survival data with the Wilcoxon statistic. Biometrics, 51, 1175-1183.
– reference: Alexander, B. M. et al. (2018). Hazards of hazard ratios - deviations from model assumptions in immunotherapy [Letter to the editor]. The New England Journal of Medicine, 378, 1158-1159.
– reference: Xu, J. et al. (2018). Results of a randomized, double-blind, placebo-controlled, phase III trial of trifluridine/tipiracil (TAS-102) monotherapy in Asian patients with previously treated metastatic colorectal cancer: the TERRA study. Journal of Clinical Oncology, 36, 350-358.
– reference: Zhang, D. and Quan, H. (2009). Power and sample size calculation for log-rank test with a time lag in treatment effect. Statistics in Medicine, 28, 864-879.
– reference: Chan, A. et al. (2016). Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology, 17, 367-377.
– reference: Murray, S. and Tsiatis, A. A. (1999). Sequential methods for comparing years of life saved in the two-sample censored data problem. Biometrics, 55, 1085-1092.
– reference: Korn, E. L. and Freidlin, B. (2018). Interim futility monitoring assessing immune therapies with a potentially delayed treatment effect. Journal of Clinical Oncology, 36, 2444-2449.
– reference: Martinez, R. L. M. C. and Naranjo, J. D. (2010). A pretest for choosing between logrank and wilcoxon tests in the two-sample problem. METRON, 68, 111-125.
– reference: Tsiatis, A. A. (1982). Repeated significance testing for a general class of statistics used in censored survival analysis. Journal of the American Statistical Association, 77, 855-861.
– reference: Eaton, A., Therneau, T. and Le-Rademacher, J. (2020). Designing clinical trials with (restricted) mean survival time endpoint: Practical considerations. Clinical Trials, 17, 285-294.
– reference: Rajkumar, S. et al. (2010). Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. The Lancet Oncology, 11, 29-37.
– reference: Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data. Biometrics, 45, 497-507.
– reference: Roychoudhury, S. et al. (2021). Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross-pharma working group. Statistics in Biopharmaceutical Research, 15, 280-294.
– reference: ICH (2019). Addendum on estimands and sensitivity analysis in clinical trials to the guidance on statistical principles for clinical trials: E9(R1), Step 4.
– reference: Dobler, D. and Pauly, M. (2018). Bootstrap- and permutation-based inference for the Mann-Whitney effect for right-censored and tied data. TEST, 27, 639-658.
– reference: Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data second edition. Springer-Verlag, New York.
– reference: Hasegawa, T. et al. (2020). Restricted mean survival time as a summary measure of time-to-event outcome. Pharmaceutical Statistics, 19, 436-453.
– reference: Hasegawa, T. (2016). Group sequential monitoring based on the weighted log-rank test statistic with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 15, 412-419.
– reference: Collett, D. (2015). Modelling Survival Data in Medical Research third edition. CRC Press, Boca Raton.
– reference: Uno, H. et al. (2015). A versatile test for equality of two survival functions based on weighted differences of Kaplan-Meier curves. Statistics in Medicine, 34, 3680-3695.
– reference: Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. John Wiley & Sons, New York.
– reference: Horiguchi, M. et al. (2019). How do the accrual pattern and follow-up duration affect the hazard ratio estimate when the proportional hazards assumption is violated? The Oncologist, 24, 867-871.
– reference: Lu, Y. and Tian, L. (2021). Statistical considerations for sequential analysis of the restricted mean survival time for randomized clinical trials. Statistics in Biopharmaceutical Research, 13, 210-218.
– reference: Kundu, M. G. and Sarkar, J. (2021). On information fraction for Fleming-Harrington type weighted log-rank tests in a group-sequential clinical trial design. Statistics in Medicine, 40, 2321-2338.
– reference: Zhang, J. and Pulkstenis, E. (2016). Sample size and power of survival trials in group sequential design with delayed treatment effect. Statistics in Biopharmaceutical Research, 8, 268-275.
– reference: Robert, C. et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372, 320-330.
– reference: Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. Statistics in Medicine, 29, 3245-3257.
– reference: Hasegawa, T. (2014). Sample size determination for the weighted log-rank test with the Fleming-Harrington class of weights in cancer vaccine studies. Pharmaceutical Statistics, 13, 128-135.
– reference: Luo, X. et al. (2019). Design and monitoring of survival trials in complex scenarios. Statistics in Medicine, 38, 192-209.
– reference: Yotsuyanagi, H. et al. (2023). A phase 2/3 study of S-217622 in participants with SARS-CoV-2 infection (Phase 3 part). Medicine, 102, e33024.
– reference: Martinez, E. E. et al. (2017). Tests for equivalence of two survival functions: Alternative to the tests under proportional hazards. Statistical Methods in Medical Research, 26, 75-87.
– reference: Slud, E. V. and Wei, L. J. (1982). Two-sample repeated significance tests based on the modified Wilcoxon statistics. Journal of the American Statistical Association, 77, 862-868.
– reference: ICH (1998). Statistical principles for clinical trials: E9, Step 5.
– reference: Tian, L. et al. (2020). On the empirical choice of the time window for restricted mean survival time. Biometrics, 76, 1157-1166.
– reference: Pocock, S. J. et al. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
– reference: Lan, K. K. and Zucker, D. M. (1993). Sequential monitoring of clinical trials: the role of information and Brownian motion. Statistics in Medicine, 12, 753-765.
– reference: Uno, H. and Horiguchi, M. (2023). Ratio and difference of average hazard with survival weight: New measures to quantify survival benefit of new therapy. Statistics in Medicine, 42, 936-952.
– reference: Xu, Z. et al. (2018). Designing cancer immunotherapy trials with random treatment time-lag effect. Statistics in Medicine, 37, 4589-4609.
SSID ssj0000603397
ssib005627525
ssib029852174
Score 2.4044592
SourceID jstage
SourceType Publisher
StartPage 247
Title Fleming—Harringtonの重み付き log-rank検定と境界内平均生存時間の差の検定における必要被験者数と情報分数
URI https://www.jstage.jst.go.jp/article/jjb/45/2/45_247/_article/-char/ja
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 計量生物学, 2024/11/30, Vol.45(2), pp.247-268
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2185-6494
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603397
  issn: 0918-4430
  databaseCode: KQ8
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNSK4EX8xG96cE6SmmQmk8wx2c1SFAWhhd5CkiaHBT8o7UFPTcu2ou1B2koVRSkihWJRPIh46H_wJxizbf-F702S3SgKbS_Dy9t58z5mZufNMPOeolyLuRYHljBVvMikMiueUANT4LmVHoG_HJq2hu-db9_hI2Ps5rg5PnDkR-3W0vRUOBw9_ue7ksP0KuCgX_GV7AF6ttcoIACG_oUSehjKffUxGP0ePlguLyywkWBysrwR71HwEYnjEU8Q2O_bzRLjtojHiOsSYZcYu3kd_v9UTN5OPE4cRkSDeCbSCqdqx5YYYEOJZxFhElvWsTmxTQRcQVyKgGgiO6wD7bQkVVPy4kSAJAbKIwCmNQmB3JJAD_M_MdxK5gojdAmAYK5spyXlsYnD8VcEDEklUAVkaqOlsA5HLVytpiBH7Qp1HI24ulTQRh2rynVPXjZuY4XSwq2a1vAJHEWpvtM7_ZTaS3WBGpgjID_BbDDWJdYgLpOEjDhW_VDGYFUwyHIaSbnAcoU2DeI0DiSUHAgNsG79uFaHCcRKHrHEgXdmqpwVSaKr1awIzlnOWqO-NBWRTUsvxyiSGf29gJpcyAW0HQ4zc7hH8kdA8nK4-1DJZ6ZvyIJZfoXH54J-G_YsRw1YaTGdyq27tZBxGBa7v4YYwjZxV9w7F9W4RqnMidRTuYgqjKLd6AsGHmMb9k_V3UvpDo6eVE6U-7ghp5DmlDLQDk4rx4rMro_OKIvl1Pw5s9KflFm6tbewlKXbv76vZenSUDXtuu9f51uvsnQjX5_bWV3M5zv5ty_5m4Wdlbf5x7Xuy9m9F8tAm3_dgrKqvJmlT7P0eTb7LN_u7H5Id9c39zaWd2c63dVP0FR3rpO_-5w_mYfPs8pYyxttjKhl4hO1jU_V1TAMwoSDZfD4KDCiOOKUxomRRLo1QSnVmYiYNmHGlhWA-bTQiCwtCvWEG_DfyhN6Thm8_-B-fF4ZwvSwesICjbKQicAOMP0DjZIAsXpCLyi8MKP_sIhu4--zey8elvCScrw_Yy4rg1OT0_EVcOynwqtypPwG9ijeJw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fleming%E2%80%94Harrington%E3%81%AE%E9%87%8D%E3%81%BF%E4%BB%98%E3%81%8D+log-rank%E6%A4%9C%E5%AE%9A%E3%81%A8%E5%A2%83%E7%95%8C%E5%86%85%E5%B9%B3%E5%9D%87%E7%94%9F%E5%AD%98%E6%99%82%E9%96%93%E3%81%AE%E5%B7%AE%E3%81%AE%E6%A4%9C%E5%AE%9A%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%BF%85%E8%A6%81%E8%A2%AB%E9%A8%93%E8%80%85%E6%95%B0%E3%81%A8%E6%83%85%E5%A0%B1%E5%88%86%E6%95%B0&rft.jtitle=%E8%A8%88%E9%87%8F%E7%94%9F%E7%89%A9%E5%AD%A6&rft.au=%E9%95%B7%E8%B0%B7%E5%B7%9D%2C+%E8%B2%B4%E5%A4%A7&rft.date=2024-11-30&rft.pub=%E6%97%A5%E6%9C%AC%E8%A8%88%E9%87%8F%E7%94%9F%E7%89%A9%E5%AD%A6%E4%BC%9A&rft.issn=0918-4430&rft.eissn=2185-6494&rft.volume=45&rft.issue=2&rft.spage=247&rft.epage=268&rft_id=info:doi/10.5691%2Fjjb.45.247&rft.externalDocID=article_jjb_45_2_45_247_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-4430&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-4430&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-4430&client=summon