地下水データベース構築と汎用化に向けた展望
これまでの研究や調査によって得られた膨大な地下水データを体系的かつ統一的に収容し,電子情報等で提供するデータベースの構築が求められる。本論説では,地下水データの分類からその多様性を整理した上で,日本地下水学会「地域地下水情報データベース」を含む国内外のデータベースの現状をレビューする。その上で,データベース構築に向け,地下水データの本質的な課題として,時空間的な変動性,データの不確実性,スケール依存性を踏まえ,求められる地下水データベースの要件について論ずる。更に,データベースの発展として,データのない地点の値の推定あるいは将来の値の予測を汎用化と定義し,空間内挿推定,数値シミュレーション,機...
Saved in:
| Published in | 地下水学会誌 Vol. 67; no. 1; pp. 7 - 30 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Japanese |
| Published |
公益社団法人 日本地下水学会
28.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0913-4182 2185-5943 |
| DOI | 10.5917/jagh.67.7 |
Cover
| Abstract | これまでの研究や調査によって得られた膨大な地下水データを体系的かつ統一的に収容し,電子情報等で提供するデータベースの構築が求められる。本論説では,地下水データの分類からその多様性を整理した上で,日本地下水学会「地域地下水情報データベース」を含む国内外のデータベースの現状をレビューする。その上で,データベース構築に向け,地下水データの本質的な課題として,時空間的な変動性,データの不確実性,スケール依存性を踏まえ,求められる地下水データベースの要件について論ずる。更に,データベースの発展として,データのない地点の値の推定あるいは将来の値の予測を汎用化と定義し,空間内挿推定,数値シミュレーション,機械学習の3手法を取り上げ,それら手法の研究の最前線を紹介する。 |
|---|---|
| AbstractList | これまでの研究や調査によって得られた膨大な地下水データを体系的かつ統一的に収容し,電子情報等で提供するデータベースの構築が求められる。本論説では,地下水データの分類からその多様性を整理した上で,日本地下水学会「地域地下水情報データベース」を含む国内外のデータベースの現状をレビューする。その上で,データベース構築に向け,地下水データの本質的な課題として,時空間的な変動性,データの不確実性,スケール依存性を踏まえ,求められる地下水データベースの要件について論ずる。更に,データベースの発展として,データのない地点の値の推定あるいは将来の値の予測を汎用化と定義し,空間内挿推定,数値シミュレーション,機械学習の3手法を取り上げ,それら手法の研究の最前線を紹介する。 |
| Author | 柏谷 公希 利部 慎 阪田 義隆 愛知 正温 |
| Author_xml | – sequence: 1 fullname: 柏谷 公希 organization: 京都大学大学院工学研究科 – sequence: 1 fullname: 利部 慎 organization: 長崎大学環境科学部 – sequence: 1 fullname: 愛知 正温 organization: 東京大学大学院新領域創成科学研究科 – sequence: 1 fullname: 阪田 義隆 organization: 金沢大学大学院自然科学研究科 |
| BookMark | eNo9T8tKw0AAXKSCsfbghyTuZl9ZEESKLyh40XPYZDdtSq2S9OIx5iDSIgoqiAWPFjzYggcFwY9Zk_6GrYowzAwzMDDLoNI97moAVhF0qEB8rS2bLYdxhy8Ay0UetakguAIsKBC2CfLcJVBL0ziAkFPGoScssFEMx19v_XL8avJzk3-Ys0-T3_-Y9_KpP325MNmonFxOb0bF4M5kz8XVtclmeCwmt-XwYQUsRrKT6tqfVsHh9tZBfddu7O_s1TcbdtuF2LWZgiKIIo-4IdUBU1RpAqWklEWISIkkDMJIh0IJqhFjTBGEceBhV0nGiFK4CtZ_d9tpTza1f5LERzI59WXSi8OO9ufXfcZ9NCf-H4ctmcw6_A22iWw_ |
| ContentType | Journal Article |
| Copyright | 公益社団法人 日本地下水学会 |
| Copyright_xml | – notice: 公益社団法人 日本地下水学会 |
| DOI | 10.5917/jagh.67.7 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2185-5943 |
| EndPage | 30 |
| ExternalDocumentID | article_jagh_67_1_67_7_article_char_ja |
| GroupedDBID | ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT ~02 |
| ID | FETCH-LOGICAL-j2032-6d09bff842c5eb6d5de40aa556f14aa1a0bcfec9d95e1666d4133b832da664dd3 |
| ISSN | 0913-4182 |
| IngestDate | Wed Sep 03 06:30:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j2032-6d09bff842c5eb6d5de40aa556f14aa1a0bcfec9d95e1666d4133b832da664dd3 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/jagh/67/1/67_7/_article/-char/ja |
| PageCount | 24 |
| ParticipantIDs | jstage_primary_article_jagh_67_1_67_7_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 2025/02/28 |
| PublicationDateYYYYMMDD | 2025-02-28 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025/02/28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 地下水学会誌 |
| PublicationTitleAlternate | 地下水学会誌 |
| PublicationYear | 2025 |
| Publisher | 公益社団法人 日本地下水学会 |
| Publisher_xml | – name: 公益社団法人 日本地下水学会 |
| References | Huang, X., Gao, L., Zhang, N., Crosbie, R.S., Ye, L., Liu, J., Guo, Z., Meng, Q., Fu, G., Bryan, B.A. (2023): A top-down deep learning model for predicting spatiotemporal dynamics of groundwater recharge. Environmental Modelling & Software, 167, 105778, https://doi.org/10.1016/j.envsoft.2023.105778. Marker, P.A., Foged, N., He, X., Christiansen, A.V., Refsgaard, A., Auken, E. and Bauer-Gottwein, P. (2015): Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs. Hydrology and Earth System Sciences, 19(9), 3875-3890. Ohmer, M., Liesch, T., Goeppert, N. and Goldscheider, N. (2017): On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange, Advances in Water Resources, 109, 121-132. Li, K.Q., Chen, Q.M. and Chen, G. (2024): Scale dependency of anisotropic thermal conductivity of heterogeneous geomaterials. Bulletin of Engineering Geology and the Environment, 83, doi:10.1007/s10064-024-03571-7. Riva, M. and Willmann, M. (2009): Impact of log-transmissivity variogram structure on groundwater flow and transport predictions. Advances in Water Resources, 32(8), 1311-1322. Zhang, X., Ma, F., Yin, S., Wallace, C.D., Soltanian, M.R., Dai, Z., Ritzi, R.W., Ma, Z., Zhan, C. and Lü, X. (2021): Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review. Applied Energy, 303, 117603, doi:10.1016/j.apenergy.2021.117603. Haggerty, R., Sun, J., Yu, H., Li , Y. (2023): Application of machine learning in groundwater quality modeling -A comprehensive review. Water Research, 233, 15, https://doi.org/10.1016/j.watres.2023.119745. 産業技術総合研究所(2023):全国水文環境データベース,https://gbank.gsj.jp/WaterEnvironmentMap/,(2024.5.11閲覧) Curtis, Z.K., Li, S.G., Liao, H.S. and Lusch, D. (2018): Data-driven approach for analyzing hydrogeology and groundwater quality across multiple scales. Groundwater, 56(3), 377-398. Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020): A Simple Framework for Contrastive Learning of Visual Representations. International Conference on Machine Learning, doi:10.48550/arXiv.2002.05709. 梅田浩司・柳澤孝一・米田茂夫(1995):日本の地盤を対象とした透水係数データベースの作成,地下水学会誌,37(1),69-77 Tanjung, M., Syahreza, S. and Rusdi, M. (2020): Comparison of interpolation methods based on Geographic Information System (GIS) in the spatial distribution of seawater intrusion. Journal Natural, 20(2), 24-30. Stefania, G.A., Rotiroti, M., Buerge, I.J., Zanotti, C., Nava, V., Leoni, B., Fumagalli, L. and Bonomi, T. (2019): Identification of groundwater pollution sources in a landfill site using artificial sweeteners, multivariate analysis and transport modeling. Waste Management, 95, 116-128. Kahn, R. (1988): Coping with all the Earth science data. EOS, 69(21), 609-612. Vilhelmsen, T., Marker, P., Foged, N., Wernberg, T., Auken, E., Christiansen, A.V., Bauer-Gottwein, P., Christensen, S. and Høyer, A.-S. (2019): A regional Scale hydrostratigraphy generated from geophysical data of varying age, type, and quality. Water Resources Management, 33, 539-553. Gong, G., Mattevada, S. and O’Bryant, S.E. (2014): Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environmental Research, 130, 59-69. Vetrimurugan, E., Karthikeyan, B. and Lakshmanan, E. (2017): Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environmental Science and Pollution Research, 24(3), 11601-11617. Qiu, W., Ma, T., Wang, Y., Cheng, J., Su, C. and Li, J. (2022): Review on status of groundwater database and application prospect in deep-time digital earth plan. Geoscience Frontiers, 13(4), doi:10.1016/j.gsf.2022.101383 Møller, I., Verner, H., Søndergaard, V.H., Flemming, J., Auken, E. and Christiansen, A.V. (2009): Integrated management and utilization of hydrogeophysical data on a national scale. Near Surface Geophysics, 7(5-6), 647-659. 日本海洋学会(2023):海洋観測ガイドライン全十巻,https://kaiyo-gakkai.jp/jos/guide_line/jp/Vol1_10_JP20230518.pdf,(2024.5.17閲覧) Lynch, C. (2008): How do your data grow, Nature, 455(7209), 28-29. Neuman, S.P. (1990): Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resources Research, 26(8), 1749-1758. Rodriguez-Dono, A., Zhou, Y. and Olivella, S. (2023): A new approach to model geomaterials with heterogeneous properties in thermohydro-mechanical coupled problems. Computers and Geotechnics, 159, 105400, doi:10.1016/j.compgeo.2023.105400. U.S. Geologic Survey (2024): National Ground-Water Monitoring Network, https://cida.usgs.gov/ngwmn/, (2024.5.17閲覧) Ministry of Jal Shakti, India (2018): India Water Resources Information System, https://indiawris.gov.in/wris/#/home,(2024.5.17閲覧) 浅井和由・辻村真貴・加藤勇治(2020):里山湧水における年代トレーサーの挙動.地下水学会誌,62(4),589-599 Jalali, M., Karami, S. and Marj, A.F. (2019): On the problem of the spatial distribution delineation of the groundwater quality indicators via multivariate statistical and geostatistical approaches. Environmental Monitoring and Assessment, 191(2), 323, doi:10.1007/s10661-019-7432-1. Kamińska, A. and Grzywna, A. (2014): Comparison of deteministic interpolation methods for the estimation of groundwater level, Journal of Ecological Engineering, 15(4), 55-60. Ramu, V.B.M., Chacon, L. and Poovathingal, S.J. (2023): Development of a Supervised Learning Model to Predict Length Scale Dependent Permeability of Porous Carbon Composites. Transport in Porous Media, 150, 157-176. Høyer, A.-S., Jørgensen, F., Sandersen, P.B.E., Viezzoli, A., Møller, I. (2015): 3D geological modelling of a complex Buried-Valley network delineated from borehole and AEM data. Journal of Applied Geophysics, 2015, 94-102. 三木光範・田中美里(2015):データベース-基礎からネット社会での応用まで-,210pp,共立出版社 Dramsch. J.S. (2020): Chapter One - 70 years of machine learning in geoscience in review. Advances in Geophysics, 61, 1-55. Martinez-Landa, L. and Carrera, J. (2005): An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resources Research, 41(3), doi.org/10.1029/2004WR003458. 越谷 賢・丸井敦尚(2011):日本全国の地盤調査ボーリングデータを用いた地形・地質条件に基づく地下水面の推定,地下水学会誌,53(2),179-191 農業用地下水研究グループ(1986):日本の地下水,地球社,1043pp Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D., Kurakin, A., Zhang, H. and Raffel, C. (2020): FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Neural Information Processing Systems 2020, doi:10.48550/arXiv.2001.07685. Karimanzira, D., Weis, J., Wunsch, A., Ritzau, L., Liesch, T. and Ohmer, M. (2023): Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices. Water and Artificial Intelligence, 5, doi:10.3389/frwa.2023.1193142. Sellars, S., Nguyen, P., Chu, W., Gao, W., Hsu, K.l. and Sorooshian, S. (2013) Computational Earth Science: Big Data Transformed Into Insight. EOS, 94(32), 277-278. Sampath, P.V., Liao, H.S., Curtis, Z.K., Herbert, M.E., Doran, P.J., May, C.A., Landis, D.A. and Li, S.G. (2016): Understanding fen hydrology across multiple scales. Hydrological Process, 30(19), 3390-3407. 内閣官房水循環政策本部事務局(2023):地下水データベース,https://www.chikasui-db.jp/,(2024.4.12閲覧) Bonomi, T., Fumagalli, L., Rotiroti, M., Bellani, A. and Cavallin, A. (2014): Banca dati idrogeologica TANGRAM©: strumento per elaborazioni quantitative di dati per la valutazione delle acque sotterranee [The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment]. Acque Sotterranee [Italian Journal of groundwater]. doi:10.7343/ AS-072-14-0098. Masoumi, Z., Rezaei, A. and Maleki, J. (2019): Improvement of water table interpolation and groundwater storage volume using fuzzy computation, Environmental Monitoring and Assessment, 191(6), 401. Rasmussen, P., Sonnenborg, T.O., Goncear, G. and Hinsby, K. (2013): Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Sciences, 17(1), 421-443. Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M. and Shinozaki, T. (2021): FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. Neural Information Processing Systems, doi:10.48550/arXiv.2110.08263. Tesoriero, A.J., Wherry, S.A., Dupuy, D.I. and Johnson, T.D. (2024): Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. Environmental Science & Technology, 58(11), 5079-5092. Ishii, E., Watanabe, Y., Agusa, T., Hosono, T. and Nakata, H. (2021): Acesulfame as a suitable sewer tracer on groundwater pollution: A case study before and after the 2016 Mw 7.0 Kumamoto earthquakes. Science of the Total Environment, 754, 142409, doi:10.1016/j.scitotenv.2020.142409. Leer, M.D., Zaadnoordijk, W.J., Zech, A., Buma, J., Harting, R., Bierkens, M.F.P. and Griffioen, J. (2023): Dominant factors determining the hydraulic conductivity of sedimentary aquitards: A random forest approach. Journal of Hydrology, 627, doi:10.1016/j.jhydrol.2023.130468. Sampath, P.V., Liao, H.S., Curtis, Z.K., Doran, P.J., Herbert, M.E., May, C.A. and Li, S.G. (2015): Understanding the groundwater hydrology of a geographically-isolated Prairie Fen: implications for conservation. PLoS One, 10, doi:10.1371/journal.pone.0140430. Erzin, Y., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2009): Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Canadian Geotechnical Journal, 46(8), 955-968. Sameen, M.I., Pradhan, B. and Lee, S. (2019): Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas. Natural Resources Research, 28, 757-775. Li, X., Xue, C., Chen, Y., Yuan, F., Li, Y., Zheng, C., Zhang, M., Ge, C., Guo, D., Lan, X., Tang, M. and Lu, S. (2023): 3D convolutional neural Network-based 3D mi |
| References_xml | – reference: Bonomi, T., Fumagalli, L., Rotiroti, M., Bellani, A. and Cavallin, A. (2014): Banca dati idrogeologica TANGRAM©: strumento per elaborazioni quantitative di dati per la valutazione delle acque sotterranee [The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment]. Acque Sotterranee [Italian Journal of groundwater]. doi:10.7343/ AS-072-14-0098. – reference: Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D., Kurakin, A., Zhang, H. and Raffel, C. (2020): FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Neural Information Processing Systems 2020, doi:10.48550/arXiv.2001.07685. – reference: 土木研究所(2023):国土地盤情報検索サイトKuniJiban,https://www.kunijiban.pwri.go.jp/jp/,(2024.4.12閲覧). – reference: Renard, P. and Ababou, R. (2022): Equivalent Permeability Tensor of Heterogeneous Media: Upscaling Methods and Criteria (Review and Analyses). Geosciences, 12, 269, doi:10.3390/geosciences12070269. – reference: Levison, J., Larocque, M., Fournier, V., Gagné, S., Pellerin, S. and Ouellet, M.A. (2014): Dynamics of a headwater system and peatland under current conditions and with climate change. Hydrological Processes, 28(17), 4808-4822. – reference: Geological Survey of Denmark and Greenland (2024): National well database (Jupiter). https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter.(2024.11.6閲覧) – reference: Ikawa, R., Machida, I., Koshigai, M., Nishizaki, S. and Marui, A. (2014): Coastal aquifer system in late Pleistocene to Holocene deposits at Horonobe in Hokkaido, Japan. Hydrogeology Journal, 22, 987-1002. – reference: Zhang, X., Ma, F., Yin, S., Wallace, C.D., Soltanian, M.R., Dai, Z., Ritzi, R.W., Ma, Z., Zhan, C. and Lü, X. (2021): Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review. Applied Energy, 303, 117603, doi:10.1016/j.apenergy.2021.117603. – reference: Gong, G., Mattevada, S. and O’Bryant, S.E. (2014): Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environmental Research, 130, 59-69. – reference: 阪田義隆(2021):クリギング入門,230pp., コロナ社. – reference: ISO (2008): IOS/IEC Guide 98-3:2008, Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995), https://www.iso.org/standard/50461.html,(2024.5.17閲覧) – reference: Sampath, P.V., Liao, H.S., Curtis, Z.K., Doran, P.J., Herbert, M.E., May, C.A. and Li, S.G. (2015): Understanding the groundwater hydrology of a geographically-isolated Prairie Fen: implications for conservation. PLoS One, 10, doi:10.1371/journal.pone.0140430. – reference: Neuman, S.P. (1990): Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resources Research, 26(8), 1749-1758. – reference: Cuomo, S., Rosa, M.D., Giampaolo, F., Izzo, S. and Cola, V.S.D. (2023): Solving groundwater flow equation using physics-informed neural networks. Computers & Mathematics with Applications, 145, 106-123. – reference: Masoumi, Z., Rezaei, A. and Maleki, J. (2019): Improvement of water table interpolation and groundwater storage volume using fuzzy computation, Environmental Monitoring and Assessment, 191(6), 401. – reference: Sellars, S., Nguyen, P., Chu, W., Gao, W., Hsu, K.l. and Sorooshian, S. (2013) Computational Earth Science: Big Data Transformed Into Insight. EOS, 94(32), 277-278. – reference: Ishii, E., Watanabe, Y., Agusa, T., Hosono, T. and Nakata, H. (2021): Acesulfame as a suitable sewer tracer on groundwater pollution: A case study before and after the 2016 Mw 7.0 Kumamoto earthquakes. Science of the Total Environment, 754, 142409, doi:10.1016/j.scitotenv.2020.142409. – reference: Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M. and Shinozaki, T. (2021): FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. Neural Information Processing Systems, doi:10.48550/arXiv.2110.08263. – reference: Henriksen, H., Troldborg, L., Nyegaard, P., Sonnenborg, T., Refsgaard, J., Madsen, B. (2003): Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280, 52-71. – reference: Leer, M.D., Zaadnoordijk, W.J., Zech, A., Buma, J., Harting, R., Bierkens, M.F.P. and Griffioen, J. (2023): Dominant factors determining the hydraulic conductivity of sedimentary aquitards: A random forest approach. Journal of Hydrology, 627, doi:10.1016/j.jhydrol.2023.130468. – reference: Høyer, A.-S., Jørgensen, F., Sandersen, P.B.E., Viezzoli, A., Møller, I. (2015): 3D geological modelling of a complex Buried-Valley network delineated from borehole and AEM data. Journal of Applied Geophysics, 2015, 94-102. – reference: 国土交通省(2001):地下水マップ, https://nlftp.mlit. – reference: Dramsch. J.S. (2020): Chapter One - 70 years of machine learning in geoscience in review. Advances in Geophysics, 61, 1-55. – reference: 農業用地下水研究グループ(1986):日本の地下水,地球社,1043pp. – reference: Tesoriero, A.J., Wherry, S.A., Dupuy, D.I. and Johnson, T.D. (2024): Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. Environmental Science & Technology, 58(11), 5079-5092. – reference: Jalali, M., Karami, S. and Marj, A.F. (2019): On the problem of the spatial distribution delineation of the groundwater quality indicators via multivariate statistical and geostatistical approaches. Environmental Monitoring and Assessment, 191(2), 323, doi:10.1007/s10661-019-7432-1. – reference: 内閣官房水循環政策本部事務局(2023):地下水データベース,https://www.chikasui-db.jp/,(2024.4.12閲覧). – reference: Thompson, K., Cadle, S. and Roemer, G. (2015): Integrating Less Common Data Sources to Improve Groundwater Model Calibration. Mine Water and the Environment, 34, 153-161. – reference: Ohmer, M., Liesch, T., Goeppert, N. and Goldscheider, N. (2017): On the optimal selection of interpolation methods for groundwater contouring: An example of propagation of uncertainty regarding inter-aquifer exchange, Advances in Water Resources, 109, 121-132. – reference: 国土交通省(2002a):全国地下水資料台帳,https://nlftp.mlit.go.jp/kokjo/inspect/landclassification/water/f9_exp.html,(2024.5.22閲覧). – reference: Kagabu, M., Shimada, J., Delinom, R., Tsujimura, M. and Taniguchi, M. (2011): Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry. Journal of Asian Earth Sciences, 40(1), 226-239. – reference: Schneider, R., Henriksen, H.J. and Stisen, S. (2022): A robust objective function for calibration of groundwater models in light of deficiencies of model structure and observations. Journal of Hydrology, 613, 128339, doi:10.1016/j.jhydrol.2022.128339. – reference: Vilhelmsen, T., Marker, P., Foged, N., Wernberg, T., Auken, E., Christiansen, A.V., Bauer-Gottwein, P., Christensen, S. and Høyer, A.-S. (2019): A regional Scale hydrostratigraphy generated from geophysical data of varying age, type, and quality. Water Resources Management, 33, 539-553. – reference: Stefania, G.A., Rotiroti, M., Buerge, I.J., Zanotti, C., Nava, V., Leoni, B., Fumagalli, L. and Bonomi, T. (2019): Identification of groundwater pollution sources in a landfill site using artificial sweeteners, multivariate analysis and transport modeling. Waste Management, 95, 116-128. – reference: Groundwater Information Network (2021) : GIN Basic Map Viewer, http://gw-info.net.(2024.3.22閲覧). – reference: Sampath, P.V., Liao, H.S., Curtis, Z.K., Herbert, M.E., Doran, P.J., May, C.A., Landis, D.A. and Li, S.G. (2016): Understanding fen hydrology across multiple scales. Hydrological Process, 30(19), 3390-3407. – reference: 小野昌彦・本高雄大・嶋田 純・長谷川琢磨・中田弘太郎・利部 慎・工藤圭史(2014):沿岸域における地下水位の回復に伴う地下水塩水化現象の解明.地下水学会誌,56(3),189-208. – reference: Sun, Y., Kang, S., Li, F. and Zhang, L. (2009): Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China, Environmental Modelling & Software, 24 (10), 1163-1170. – reference: Marker, P.A., Foged, N., He, X., Christiansen, A.V., Refsgaard, A., Auken, E. and Bauer-Gottwein, P. (2015): Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs. Hydrology and Earth System Sciences, 19(9), 3875-3890. – reference: Foged, N., Marker, P.A., Christiansen, A.V., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.S. and Auken, E. (2014): Large scale 3D-modeling by integration of resistivity models and borehole data through inversion. Hydrology and Earth System Sciences, 18(11), 4349-4362. – reference: Haggerty, R., Sun, J., Yu, H., Li , Y. (2023): Application of machine learning in groundwater quality modeling -A comprehensive review. Water Research, 233, 15, https://doi.org/10.1016/j.watres.2023.119745. – reference: Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020): A Simple Framework for Contrastive Learning of Visual Representations. International Conference on Machine Learning, doi:10.48550/arXiv.2002.05709. – reference: 越谷 賢・丸井敦尚(2011):日本全国の地盤調査ボーリングデータを用いた地形・地質条件に基づく地下水面の推定,地下水学会誌,53(2),179-191. – reference: 国土交通省(2014):国土数値情報ダウンロードサイト,https://nlftp.mlit.go.jp/ksj/index.html,(2024.5.22閲覧). – reference: Lynch, C. (2008): How do your data grow, Nature, 455(7209), 28-29. – reference: U.S. Geologic Survey (2024): National Ground-Water Monitoring Network, https://cida.usgs.gov/ngwmn/, (2024.5.17閲覧). – reference: 産業技術総合研究所(2004):日本列島及びその周辺域の地温勾配及び地殻熱流量データベース,CD-ROM,産業技術総合研究所. – reference: Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MDDEFP), Canada: Système d’informations hydrogéologiques (SIH). https://www.environnement.gouv.qc.ca/eau/souterraines/sih/index.htm, (2024.5.17閲覧) – reference: Ramu, V.B.M., Chacon, L. and Poovathingal, S.J. (2023): Development of a Supervised Learning Model to Predict Length Scale Dependent Permeability of Porous Carbon Composites. Transport in Porous Media, 150, 157-176. – reference: Condon, L.E., Kollet, S., Bierkens, M.F.P., Fogg, G.E., Maxwell, R.M., Hill, M.C., Fransen, H.-J.H., Verhoef, A., Van Loon, A.F., Sulis, M. and Abesser, C. (2021): Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resources Research, 57(12), doi:10.1029/2020WR029500. – reference: Hosono T. and Y. Masaki (2022): Post-seismic hydrochemical changes in regional groundwater flow systems in response to the 2016 Mw 7.0 Kumamoto earthquake. Journal of Hydrology, 580, 124340, doi:10.1016/j.jhydrol.2019.124340. – reference: Jia, S., Dai, Z., Zhou, Z., Ling, H., Yang, Z., Qi, L., Wang, Z., Zhang, X., Thanh, H.V. and Soltanian, M.R. (2023): Upscaling dispersivity for conservative solute transport in naturally fractured media. Water Research, 235(15), 119844, doi:10.1016/j.watres.2023.119844. – reference: 梅田浩司・柳澤孝一・米田茂夫(1995):日本の地盤を対象とした透水係数データベースの作成,地下水学会誌,37(1),69-77. – reference: Martinez-Landa, L. and Carrera, J. (2005): An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resources Research, 41(3), doi.org/10.1029/2004WR003458. – reference: Ministry of Jal Shakti, India (2018): India Water Resources Information System, https://indiawris.gov.in/wris/#/home,(2024.5.17閲覧) – reference: Pang,L. and Hunt, B. (2001): Solutions and verification of a scale-dependent dispersion model. Journal of Contaminant Hydrology, 53, 21-39. – reference: go.jp/kokjo/inspect/landclassification/water/w_national_map_cw.html(2024.5.22閲覧). – reference: 増永良文(2021):データベース入門第2版,215pp,サイエンス社. – reference: Erten, G.E., Erten, O., Karacan, C.Ö., Boisvert, J. and Deutsch, C.V. (2023): Merging machine learning and geostatistical approaches for spatial modeling of geoenergy resources. International Journal of Coal Geology, 276, doi:10.1016/j.coal.2023.104328. – reference: Rasmussen, P., Sonnenborg, T.O., Goncear, G. and Hinsby, K. (2013): Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Sciences, 17(1), 421-443. – reference: Stefania, G.A., Rotiroti, M., Fumagalli, L., Simonetto, F., Capodaglio, P., Zanotti, C. and Bonomi, T. (2018): Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources. Hydrogeology Journal, 26, 147-162. – reference: Hunt, B. (1998): Contaminant Source Solutions with Scale-Dependent Dispersivities, Journal of Hydrologic Engineering, 3(4), 223-302. – reference: Rodriguez-Dono, A., Zhou, Y. and Olivella, S. (2023): A new approach to model geomaterials with heterogeneous properties in thermohydro-mechanical coupled problems. Computers and Geotechnics, 159, 105400, doi:10.1016/j.compgeo.2023.105400. – reference: Li, K.Q., Chen, Q.M. and Chen, G. (2024): Scale dependency of anisotropic thermal conductivity of heterogeneous geomaterials. Bulletin of Engineering Geology and the Environment, 83, doi:10.1007/s10064-024-03571-7. – reference: Koestel, J., Larsbo, M. and Jarvis, N. (2020): Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil. Geoderma, 366, 114206, doi:10.1016/j.geoderma.2020.114206. – reference: 日本原子力開発機構(2003):温泉地化学データベース(データ集),https://www.jaea.go.jp/04/tono/siryou/dbghs/dbghs.html,(2024.5.11閲覧). – reference: Riva, M. and Willmann, M. (2009): Impact of log-transmissivity variogram structure on groundwater flow and transport predictions. Advances in Water Resources, 32(8), 1311-1322. – reference: Araya, S.N. and Ghezzehei, T.A. (2019): Using machine learning for prediction of saturated hydraulic conductivity and its sensitivity to soil structural perturbations. Water Resources Research, 55(7), 5715-5737. – reference: Adombi, A.V.D.P., Chesnaux, R. and Boucher, M.A. (2021): Review: Theory-guided machine learning applied to hydrogeology—state of the art, opportunities and future challenges. Hydrogeology Journal, 29, 2671-2683. – reference: Qiu, W., Ma, T., Wang, Y., Cheng, J., Su, C. and Li, J. (2022): Review on status of groundwater database and application prospect in deep-time digital earth plan. Geoscience Frontiers, 13(4), doi:10.1016/j.gsf.2022.101383 – reference: Weber, D.D and Englund, E.J (1994): Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26, 589-603. – reference: International Groundwater Resources Assessment Centre (2004): Global Groundwater Information System (GGIS), https://www.un-igrac.org/global-groundwater-information-system-ggis,(2024.5.17閲覧). – reference: Kamińska, A. and Grzywna, A. (2014): Comparison of deteministic interpolation methods for the estimation of groundwater level, Journal of Ecological Engineering, 15(4), 55-60. – reference: 池田光良・三浦均也・操上広志(1999):地下水温による北海道美々川周辺の地下水流動解析.応用地質,40(2),70-85. – reference: 国土交通省(2002b):水文水質データベース,http://www1.river.go.jp/,(2024.5.22閲覧). – reference: Kahn, R. (1988): Coping with all the Earth science data. EOS, 69(21), 609-612. – reference: Vetrimurugan, E., Karthikeyan, B. and Lakshmanan, E. (2017): Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environmental Science and Pollution Research, 24(3), 11601-11617. – reference: Gelhar, L.W., Welty, C. and Rehfeldt, K.R. (1992): A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28(7), 1955-1974. – reference: Kagabu, M., Shimada, J., Nakamura, R. Delinom, R. and Taniguchi, M. (2013): Groundwater age rejuvenation caused by excessive urban pumping in Jakarta area, Indonesia. Hydrological Processes, 27(18), 2591-2604. – reference: Møller, I., Verner, H., Søndergaard, V.H., Flemming, J., Auken, E. and Christiansen, A.V. (2009): Integrated management and utilization of hydrogeophysical data on a national scale. Near Surface Geophysics, 7(5-6), 647-659. – reference: Varouchakis, E.A. and Hristopulos, D.T. (2019): Comparison of spatiotemporal variogram functions based on a sparse dataset of groundwater level variations. Spatial Statistics, 34, 100245, doi:10.1016/j.spasta.2017.07.003. – reference: 田中芳則・中山千栄子・廣瀬寛幸(2006):一湧水における水質の経日変化と地域環境要因.地下水学会誌,48(2),101-111. – reference: Sameen, M.I., Pradhan, B. and Lee, S. (2019): Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas. Natural Resources Research, 28, 757-775. – reference: 産業技術総合研究所(2023):全国水文環境データベース,https://gbank.gsj.jp/WaterEnvironmentMap/,(2024.5.11閲覧). – reference: Huang, X., Gao, L., Zhang, N., Crosbie, R.S., Ye, L., Liu, J., Guo, Z., Meng, Q., Fu, G., Bryan, B.A. (2023): A top-down deep learning model for predicting spatiotemporal dynamics of groundwater recharge. Environmental Modelling & Software, 167, 105778, https://doi.org/10.1016/j.envsoft.2023.105778. – reference: 高橋正明・風早康平・安原正也・塚本 斉・佐藤 努・高橋 浩・森川徳敏・清水 徹 ・宮越昭暢・戸崎裕貴・東郷洋子・稲村明彦・半田宙子・仲間純子・中村有理・竹内久子 ・大丸 純・清水日奈子・尾山洋一・大和田道子・切田 司(2018)深層地下水データベース(第2版).地質調査総合センター研究資料集, no.653, 産業技術総合研究所地質調査総合センター,https://www.gsj.jp/publications/pub/openfile/openfile0653.html,(2024.5.11閲覧). – reference: Li, X., Xue, C., Chen, Y., Yuan, F., Li, Y., Zheng, C., Zhang, M., Ge, C., Guo, D., Lan, X., Tang, M. and Lu, S. (2023): 3D convolutional neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within chating area, middlelower Yangtze River metallogenic Belt, China. Ore Geology Reviews, 157, 105444, doi:10.1016/ j.oregeorev.2023.105444. – reference: Curtis, Z.K., Li, S.G., Liao, H.S. and Lusch, D. (2018): Data-driven approach for analyzing hydrogeology and groundwater quality across multiple scales. Groundwater, 56(3), 377-398. – reference: Karimanzira, D., Weis, J., Wunsch, A., Ritzau, L., Liesch, T. and Ohmer, M. (2023): Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices. Water and Artificial Intelligence, 5, doi:10.3389/frwa.2023.1193142. – reference: Bureau of Meteorology, Australia (2015): National Groundwater Information System, http://www.bom.gov.au/water/groundwater/ngis/,(2024.4.12閲覧). – reference: 三木光範・田中美里(2015):データベース-基礎からネット社会での応用まで-,210pp,共立出版社. – reference: Erzin, Y., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2009): Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Canadian Geotechnical Journal, 46(8), 955-968. – reference: Højberg, A.L., Troldborg, L., Nyegaard, P., Ondracek, M., Stisen, S., Christensen, B.S.B. and Nørgaard, A. (2008): National Vandressource Model: Sjælland, Lolland, Falster og Møn -Opdatering januar 2008. GEUS rapport 2008/65, doi:10.22008/gpub/27188. København. – reference: Christiansen, A.V., Frederiksen, R.R., Vilhelmsen, T.N., Christensen, S., Maurya, P.K., Hansen, B., Kim, H., Høyer, A.-S., Aamand, J., Jakobsen, R., Børgesen, C.D., Jacobsen, B.H. and Auken, E. (2023): N-Map: High-resolution groundwater N-retention mapping and modelling by integration of geophysical, geological, geochemical, and hydrological data. Journal of Environmental Management, 343, 118126, doi:10.1016/j.jenvman.2023.118126. – reference: 浅井和由・辻村真貴・加藤勇治(2020):里山湧水における年代トレーサーの挙動.地下水学会誌,62(4),589-599. – reference: Jakobsen, R., Hinsby, K., Aamand, J., van der Keur, P., Kidmose, J., Purtschert, R., Jurgens, B., Sültenfuss, J. and Albers, C.N. (2020): History and Sources of Co-Occurring Pesticides in an Abstraction Well Unraveled by Age Distributions of Depth-Specific Groundwater Samples. Environmental Science & Technology, 54(1), 158-165. – reference: 日本海洋学会(2023):海洋観測ガイドライン全十巻,https://kaiyo-gakkai.jp/jos/guide_line/jp/Vol1_10_JP20230518.pdf,(2024.5.17閲覧). – reference: Tanjung, M., Syahreza, S. and Rusdi, M. (2020): Comparison of interpolation methods based on Geographic Information System (GIS) in the spatial distribution of seawater intrusion. Journal Natural, 20(2), 24-30. |
| SSID | ssib007567089 ssib006261148 ssj0000491394 |
| Score | 2.4136825 |
| Snippet | これまでの研究や調査によって得られた膨大な地下水データを体系的かつ統一的に収容し,電子情報等で提供するデータベースの構築が求められる。本論説では,地下水データの... |
| SourceID | jstage |
| SourceType | Publisher |
| StartPage | 7 |
| SubjectTerms | スケール依存 不確実性 地下水データベース 数値シミュレーション 時空間変動 機械学習 空間内挿推定 |
| Title | 地下水データベース構築と汎用化に向けた展望 |
| URI | https://www.jstage.jst.go.jp/article/jagh/67/1/67_7/_article/-char/ja |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 地下水学会誌, 2025/02/28, Vol.67(1), pp.7-30 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2185-5943 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491394 issn: 0913-4182 databaseCode: KQ8 dateStart: 19870101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA-760Ev4id-swdzGjqmbdIkJ2nHjouiIOzC3oZmmihzWEVmL97WPYisiIIK4oJHFzy4Cx4UBA_-KXVm_w1f0namqyLrQimZl_defi9v2ry0zQtCl7Wfi5AY4mkIvz1qeOZlhmiP8jwwhBvN3MOcW7ejhSV6Y5ktz8z-aHy1tDpU7f6jv64rOYhXgQZ-tatk_8OzE6VAgDL4F87gYTjvy8c4ZVh2cEJwSnEisEhwGtmfCcVpiAUcvCokHVcIcNKtKFL-USWteMydHo7jLhYlj49j4TT7WKS2SlJHYVh0sIxqnsThIVj6FWVa6NoqEJfM6gHMMmmGxf80hOH4Go4jVwWCMU4FjmNouv6zOJUAtmtrrBBvOWwg2HHtij3MUAMKwDJprY9Fy8oDs0ibCgUFjM7WLo6Z47EwQgfMyk-ZJZYOUdkxCWnZUpJWbQDgKg139XAlaC5Wt5dDAyy3jQqnKqZWh-2YpG42dP0H9BgOB0kCX92lpbH77sbmQ1o_9Khfbs_U1o4GMRnzmCyTW9VjWLmlyZ5rtRyQeCOyKV-A_T5mMukSbQ2yu_faEW_zaWAw-Vyz-oP3LE8v4j3fnnivJtv1gVA3iw4FMLTa_VNu3mnc1GGO3pxzcxZxUm1xMCinqDALcWneamvLDGAW2JUJLIgQBzBfqr-1dOHf4jF0tJq3zcclmONoZpCdQIev6yrj-0l0dbS5_fPLxnj7c7H-pFj_Vjz-Xqy_dYWv4w8bu5-eFmtb453nu6-2Rs_eFGsfRy9eFmtwvB_tvB5vvjuFlrrpYmfBq3Yn8QYBCQMvyolUxgga9JlWUc5yTUmWMRYZn2aZnxHVN7ovc8m0fTefQ7gYKhhA8yyKaJ6Hp9Hcyv0VfQbNG6W1Ugbujz6hmcpFH4Z-ppQSJieGBmcRK23vPShT0PT255FzB5Q7j45ML4YLaG74cFVfhNh7qC453_4ClXewug |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9C%B0%E4%B8%8B%E6%B0%B4%E3%83%87%E3%83%BC%E3%82%BF%E3%83%99%E3%83%BC%E3%82%B9%E6%A7%8B%E7%AF%89%E3%81%A8%E6%B1%8E%E7%94%A8%E5%8C%96%E3%81%AB%E5%90%91%E3%81%91%E3%81%9F%E5%B1%95%E6%9C%9B&rft.jtitle=%E5%9C%B0%E4%B8%8B%E6%B0%B4%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E6%9F%8F%E8%B0%B7+%E5%85%AC%E5%B8%8C&rft.au=%E5%88%A9%E9%83%A8+%E6%85%8E&rft.au=%E6%84%9B%E7%9F%A5+%E6%AD%A3%E6%B8%A9&rft.au=%E9%98%AA%E7%94%B0+%E7%BE%A9%E9%9A%86&rft.date=2025-02-28&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%9C%B0%E4%B8%8B%E6%B0%B4%E5%AD%A6%E4%BC%9A&rft.issn=0913-4182&rft.eissn=2185-5943&rft.volume=67&rft.issue=1&rft.spage=7&rft.epage=30&rft_id=info:doi/10.5917%2Fjagh.67.7&rft.externalDocID=article_jagh_67_1_67_7_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-4182&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-4182&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-4182&client=summon |