The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 34; no. 9-10; pp. 715 - 729
Main Authors Ignatova, Valentina V, Stolz, Paul, Kaiser, Steffen, Gustafsson, Tobias H, Lastres, Palma Rico, Sanz-Moreno, Adrián, Cho, Yi-Li, Amarie, Oana V, Aguilar-Pimentel, Antonio, Klein-Rodewald, Tanja, Calzada-Wack, Julia, Becker, Lore, Marschall, Susan, Kraiger, Markus, Garrett, Lillian, Seisenberger, Claudia, Hölter, Sabine M, Borland, Kayla, Van De Logt, Erik, Jansen, Pascal W T C, Baltissen, Marijke P, Valenta, Magdalena, Vermeulen, Michiel, Wurst, Wolfgang, Gailus-Durner, Valerie, Fuchs, Helmut, Hrabe de Angelis, Martin, Rando, Oliver J, Kellner, Stefanie M, Bultmann, Sebastian, Schneider, Robert
Format Journal Article
LanguageEnglish
Published Cold Spring Harbor Laboratory Press 01.05.2020
Subjects
Online AccessGet full text
ISSN1549-5477
0890-9369
1549-5477
DOI10.1101/gad.333369.119

Cover

Abstract Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
AbstractList In this study, Ignatova et al. performed a systematic screen to uncover new RNA methyltransferases, and demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m 6 A in 18S rRNA at position A1832. Their biochemical, molecular, and in vivo characterization of METTL5 highlights the importance of m 6 A in rRNA in stemness, differentiation, development, and diseases. Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N 6 -methyladenosine (m 6 A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m 6 A in 18S rRNA at position A 1832 . We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5 , thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m 6 A in rRNA in stemness, differentiation, development, and diseases.
Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
Author Kaiser, Steffen
Bultmann, Sebastian
Sanz-Moreno, Adrián
Seisenberger, Claudia
Baltissen, Marijke P
Ignatova, Valentina V
Gustafsson, Tobias H
Lastres, Palma Rico
Valenta, Magdalena
Hrabe de Angelis, Martin
Van De Logt, Erik
Wurst, Wolfgang
Amarie, Oana V
Garrett, Lillian
Vermeulen, Michiel
Becker, Lore
Jansen, Pascal W T C
Marschall, Susan
Hölter, Sabine M
Rando, Oliver J
Klein-Rodewald, Tanja
Cho, Yi-Li
Calzada-Wack, Julia
Fuchs, Helmut
Kraiger, Markus
Stolz, Paul
Borland, Kayla
Aguilar-Pimentel, Antonio
Kellner, Stefanie M
Schneider, Robert
Gailus-Durner, Valerie
AuthorAffiliation 9 Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Munich 81377, Germany
4 University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
13 Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
10 Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich 81377, Germany
2 Department of Biology II, Human Biology, and BioImaging, Ludwig-Maximilians Universität München, Munich 81377, Germany
8 Chair of Developmental Genetics, Technische Universität München, Freising-Weihenstephan 85354, Germany
12 German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
5 German Mouse Clinic, Institute of Experimental Genetics, HMGU, Neuherberg 85764, Germany
7 Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, GA Nijmegen 6525, the Netherlands
11 Chair of Experimental Genetic
AuthorAffiliation_xml – name: 3 Chemical Faculty, Ludwig-Maximilians Universität München, Munich 81377, Germany
– name: 10 Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich 81377, Germany
– name: 13 Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
– name: 2 Department of Biology II, Human Biology, and BioImaging, Ludwig-Maximilians Universität München, Munich 81377, Germany
– name: 6 Institute of Developmental Genetics, HMGU, Neuherberg 85764, Germany
– name: 7 Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, GA Nijmegen 6525, the Netherlands
– name: 4 University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
– name: 8 Chair of Developmental Genetics, Technische Universität München, Freising-Weihenstephan 85354, Germany
– name: 9 Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Munich 81377, Germany
– name: 12 German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
– name: 1 Institute of Functional Epigenetics, Helmholtz Zentrum München (HMGU), Neuherberg 85764, Germany
– name: 11 Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising 85354, Germany
– name: 5 German Mouse Clinic, Institute of Experimental Genetics, HMGU, Neuherberg 85764, Germany
Author_xml – sequence: 1
  givenname: Valentina V
  surname: Ignatova
  fullname: Ignatova, Valentina V
– sequence: 2
  givenname: Paul
  surname: Stolz
  fullname: Stolz, Paul
– sequence: 3
  givenname: Steffen
  surname: Kaiser
  fullname: Kaiser, Steffen
– sequence: 4
  givenname: Tobias H
  surname: Gustafsson
  fullname: Gustafsson, Tobias H
– sequence: 5
  givenname: Palma Rico
  surname: Lastres
  fullname: Lastres, Palma Rico
– sequence: 6
  givenname: Adrián
  surname: Sanz-Moreno
  fullname: Sanz-Moreno, Adrián
– sequence: 7
  givenname: Yi-Li
  surname: Cho
  fullname: Cho, Yi-Li
– sequence: 8
  givenname: Oana V
  surname: Amarie
  fullname: Amarie, Oana V
– sequence: 9
  givenname: Antonio
  surname: Aguilar-Pimentel
  fullname: Aguilar-Pimentel, Antonio
– sequence: 10
  givenname: Tanja
  surname: Klein-Rodewald
  fullname: Klein-Rodewald, Tanja
– sequence: 11
  givenname: Julia
  surname: Calzada-Wack
  fullname: Calzada-Wack, Julia
– sequence: 12
  givenname: Lore
  surname: Becker
  fullname: Becker, Lore
– sequence: 13
  givenname: Susan
  surname: Marschall
  fullname: Marschall, Susan
– sequence: 14
  givenname: Markus
  surname: Kraiger
  fullname: Kraiger, Markus
– sequence: 15
  givenname: Lillian
  surname: Garrett
  fullname: Garrett, Lillian
– sequence: 16
  givenname: Claudia
  surname: Seisenberger
  fullname: Seisenberger, Claudia
– sequence: 17
  givenname: Sabine M
  surname: Hölter
  fullname: Hölter, Sabine M
– sequence: 18
  givenname: Kayla
  surname: Borland
  fullname: Borland, Kayla
– sequence: 19
  givenname: Erik
  surname: Van De Logt
  fullname: Van De Logt, Erik
– sequence: 20
  givenname: Pascal W T C
  surname: Jansen
  fullname: Jansen, Pascal W T C
– sequence: 21
  givenname: Marijke P
  surname: Baltissen
  fullname: Baltissen, Marijke P
– sequence: 22
  givenname: Magdalena
  surname: Valenta
  fullname: Valenta, Magdalena
– sequence: 23
  givenname: Michiel
  surname: Vermeulen
  fullname: Vermeulen, Michiel
– sequence: 24
  givenname: Wolfgang
  surname: Wurst
  fullname: Wurst, Wolfgang
– sequence: 25
  givenname: Valerie
  surname: Gailus-Durner
  fullname: Gailus-Durner, Valerie
– sequence: 26
  givenname: Helmut
  surname: Fuchs
  fullname: Fuchs, Helmut
– sequence: 27
  givenname: Martin
  surname: Hrabe de Angelis
  fullname: Hrabe de Angelis, Martin
– sequence: 28
  givenname: Oliver J
  surname: Rando
  fullname: Rando, Oliver J
– sequence: 29
  givenname: Stefanie M
  surname: Kellner
  fullname: Kellner, Stefanie M
– sequence: 30
  givenname: Sebastian
  surname: Bultmann
  fullname: Bultmann, Sebastian
– sequence: 31
  givenname: Robert
  surname: Schneider
  fullname: Schneider, Robert
BookMark eNpVjs1LAzEUxINUrFavnnP00po0X-YiFPELqoLUm7C83bxtV7LJmmwL_e9dsAd9MLwZBn7MGRmFGJCQS85mnDN-vQY3E8NpO2R7RE65knaqpDGjP35MznL-YoxppvUJGYv5nBut1Sn5XG2QpvfXBW31IOw3e98nCLnGBBnpy_1qtVS0ybQJu-h36AZDO79NTRd7DNWeQnDU4Q597FoMPXjapbhO0OZzclyDz3hx-BPy8XC_unuaLt8en-8Wy-kXt8NCUTMwDOW8NKBKWYF0vHQgq5KV2taKVQqUAOvcTW14XUkLApkwxpTSIqvEhNz-crtt2aKrhhUJfNGlpoW0LyI0xf8mNJtiHXeF4dYIJQfA1QGQ4vcWc1-0Ta7QewgYt7mYixvJrdXaih-brnLG
ContentType Journal Article
Copyright 2020 Ignatova et al.; Published by Cold Spring Harbor Laboratory Press.
2020
Copyright_xml – notice: 2020 Ignatova et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2020
DBID 7X8
5PM
DOI 10.1101/gad.333369.119
DatabaseName MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Ignatova et al
EISSN 1549-5477
EndPage 729
ExternalDocumentID PMC7197354
GrantInformation_xml – fundername: EpiTrio Consortium
– fundername: DFG
  grantid: SFB 1064
– fundername: DFG
  grantid: SFB1309; KE1943/3-1
– fundername: ;
  grantid: SFB 1064; SFB 1309; 325871075
– fundername: Helmholtz Gesellschaft
– fundername: AmPro Program
  grantid: ZT0026
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
7X8
85S
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AENEX
AETEA
AFFNX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XSW
YBU
YHG
YKV
YSK
5PM
ID FETCH-LOGICAL-j1949-3f0a70e42b7a5b4ca4d1bda4cb0b69f50c5a53a9dd8f71fc49a3e03777b49e0c3
ISSN 1549-5477
0890-9369
IngestDate Thu Aug 21 18:26:45 EDT 2025
Fri Sep 05 11:00:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
License This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1949-3f0a70e42b7a5b4ca4d1bda4cb0b69f50c5a53a9dd8f71fc49a3e03777b49e0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7197354
PMID 32217665
PQID 2384199669
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197354
proquest_miscellaneous_2384199669
PublicationCentury 2000
PublicationDate 20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200501
  day: 1
PublicationDecade 2020
PublicationTitle Genes & development
PublicationYear 2020
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
SSID ssj0006066
Score 2.3245692
Snippet Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing...
In this study, Ignatova et al. performed a systematic screen to uncover new RNA methyltransferases, and demonstrate that the methyltransferase-like 5 (METTL5)...
SourceID pubmedcentral
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 715
SubjectTerms Research Paper
Title The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs
URI https://www.proquest.com/docview/2384199669
https://pubmed.ncbi.nlm.nih.gov/PMC7197354
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7clJZcQp80fbGF3oxcPXa13qMJaU0Th7Y4IYeCWe2uEhdHCpYcSP5b_ltnH7akpoc2PgixliWs-TQvfTOD0MdQJ0OqhQi0hseNRFwEPA5JICMWSR3JlAuTh5wcpeNj8vWUnvZ6ty3W0qrOBvLmr3Ul95EqrIFcTZXsf0h2c1JYgH2QL2xBwrD9ZxkvfxyN-hfpyM6Cvl7U1hHVSzBO_cn-dHpIzcjyeQFa6EoryxlfrEBRlLWtuTRpc9XwhkxZliNsVW2v1fSmrixIWsduQHVWQOB-ZZ3QE2GM2LwQ_ZPBJndTl4ubP0mIB-aN1dLTzPK8qUf7Ygq68srXgU3LbC6q_njQTk7EYUMFdByhcgFes81QmqIkQHX_0GHbEAjaJBOr73gYmPmCzjR5fUx4QImf9OIVts9-OmDywNNinQJmrjjU23Lmsil3zYQdT3Am1CCBT8phpXMgiPnywoIG9J1poUkbc7khMX6b7LGIs4SSB-hhzJhlCRx8b5rVm9jQBjH-f_meoXDxT91Lb6PH6-t0Ap0uTbfl90yfoB0fsOCRQ99T1NPFM_TIjTC9fo5-AgaxwSAGDOI7GMQOg3he4TUGYQe3MYgBg7iDQbzG4At0_Hl_ujcO_MSO4FfEQVJJHgoWahJnTNCMSEFUlClBZBZmKc9pKKmgieBKDXMW5ZJwkegwYYxlhOtQJi_RVlEW-hXC4FppoqWICKNEq2yYD6mKJVV5rCTE3Lvow_pGzUAjmtdcotDlqpqBE0oMtz7lu4h17uDs0nVwmZme6t1vivm57a3uJfr63r98g7abB-Et2qqXK_0O_NY6e2_R8Rv51J7-
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rRNA+m6A+methyltransferase+METTL5+is+involved+in+pluripotency+and+developmental+programs&rft.jtitle=Genes+%26+development&rft.au=Ignatova%2C+Valentina+V.&rft.au=Stolz%2C+Paul&rft.au=Kaiser%2C+Steffen&rft.au=Gustafsson%2C+Tobias+H.&rft.date=2020-05-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=34&rft.issue=9-10&rft.spage=715&rft.epage=729&rft_id=info:doi/10.1101%2Fgad.333369.119&rft_id=info%3Apmid%2F32217665&rft.externalDocID=PMC7197354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5477&client=summon