Failure Diagnosis Using Adaptive Neural Network

Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-m...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japan Society of Mechanical Engineers Series C Vol. 68; no. 675; pp. 3349 - 3354
Main Authors NEZU, Kikuo, SHAO, Yimin, TOKITO, Tomoya
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 2002
Subjects
Online AccessGet full text
ISSN0387-5024
1884-8354
DOI10.1299/kikaic.68.3349

Cover

Abstract Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-mean-square (LMS) algorithm and adaptive neural network under heavy environment noise conditions. Experiment results have shown that using adaptive neural network is an effective means to extract early symptoms of machine fault under heavy environment noises and low rotating speed conditions.
AbstractList Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-mean-square (LMS) algorithm and adaptive neural network under heavy environment noise conditions. Experiment results have shown that using adaptive neural network is an effective means to extract early symptoms of machine fault under heavy environment noises and low rotating speed conditions.
Author SHAO, Yimin
TOKITO, Tomoya
NEZU, Kikuo
Author_xml – sequence: 1
  fullname: NEZU, Kikuo
– sequence: 1
  fullname: SHAO, Yimin
– sequence: 1
  fullname: TOKITO, Tomoya
BookMark eNo9z7FOwzAUhWELFYlQujLnBZLauXZsj1WhgKhgoXN07TjBTUgqOwXx9oAKTN9ydKT_ksyGcXCEXDOas0LrZec79DYvVQ7A9RlJmFI8UyD4jCQUlMwELfgFWcToDaVUQ6lBJWS5Qd8fg0tvPLbDGH1Md9EPbbqq8TD5d5c-uWPA_pvpYwzdFTlvsI9u8euc7Da3L-v7bPt897BebbM90zBloKy0pmisqGthGQJ1kmunaCPLgvIGS8NAgGY1aqOUcrQx1NDGFpIx6zTMyePpdx8nbF11CP4Nw2eFYfK2d9Wpl2mpq1JVpRR__OT_r-wrhsoN8AUGHVbG
ContentType Journal Article
Copyright The Japan Society of Mechanical Engineers
Copyright_xml – notice: The Japan Society of Mechanical Engineers
DOI 10.1299/kikaic.68.3349
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8354
EndPage 3354
ExternalDocumentID article_kikaic1979_68_675_68_675_3349_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
ID FETCH-LOGICAL-j193t-38c7cb2fc5dd5c1a30e749e80f76204fa6b135391da9b888e0fb0b0fc2711ce93
ISSN 0387-5024
IngestDate Wed Sep 03 06:08:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 675
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j193t-38c7cb2fc5dd5c1a30e749e80f76204fa6b135391da9b888e0fb0b0fc2711ce93
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaic1979/68/675/68_675_3349/_article/-char/en
PageCount 6
ParticipantIDs jstage_primary_article_kikaic1979_68_675_68_675_3349_article_char_en
PublicationCentury 2000
PublicationDate 2002-00-00
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002-00-00
PublicationDecade 2000
PublicationTitle Transactions of the Japan Society of Mechanical Engineers Series C
PublicationTitleAlternate JSMET
PublicationYear 2002
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (2) Shao, Y. and Nezu, K., "An On-Line Monitoring and Diagnostic Method of Rolling Element Bearing with AI", Trans. Soc. Instrument Control Eng., 32-8 (1996), 1287-1293.
(6) 西川緯一•北村新三,ニューラルネットと計測制御,(1995),1-220,朝倉書店.
(1) Shao, Y. and Nezu, K., "Self-aligning Roller Bearing Fault•Detection Using Asynchronous Adaptive Noise Cancelling", JSME Int. J., SEIES C, 42-1 (1999), 33-43.
(4) 辻井重男•久保田一•古川利博,適応信号処理,(1995),4-27,昭晃堂.
(7) Stronge, W. J., Impact Mechanics, (2000), 86-115, Cambridge University Press.
(5) 中島智,適応フィルタを用いたころがり軸受の音響診断,(1999),41-46,設備管理学会.
(3) 前川健二•中島智•豊田利夫,衝撃振動を利用した機械部品の劣化度評価法,日本設備管理学会誌,9-3(1997),3-8.
References_xml – reference: (1) Shao, Y. and Nezu, K., "Self-aligning Roller Bearing Fault•Detection Using Asynchronous Adaptive Noise Cancelling", JSME Int. J., SEIES C, 42-1 (1999), 33-43.
– reference: (5) 中島智,適応フィルタを用いたころがり軸受の音響診断,(1999),41-46,設備管理学会.
– reference: (3) 前川健二•中島智•豊田利夫,衝撃振動を利用した機械部品の劣化度評価法,日本設備管理学会誌,9-3(1997),3-8.
– reference: (4) 辻井重男•久保田一•古川利博,適応信号処理,(1995),4-27,昭晃堂.
– reference: (2) Shao, Y. and Nezu, K., "An On-Line Monitoring and Diagnostic Method of Rolling Element Bearing with AI", Trans. Soc. Instrument Control Eng., 32-8 (1996), 1287-1293.
– reference: (7) Stronge, W. J., Impact Mechanics, (2000), 86-115, Cambridge University Press.
– reference: (6) 西川緯一•北村新三,ニューラルネットと計測制御,(1995),1-220,朝倉書店.
SSID ssib000936938
ssib012348313
ssib023160640
ssj0000578942
ssib002223792
ssib006634346
ssib020472911
ssib003171064
ssib005439748
ssj0000608103
ssib002222544
ssib002252316
Score 1.6105845
Snippet Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for...
SourceID jstage
SourceType Publisher
StartPage 3349
SubjectTerms Adaptive Filter
Machine Fault
Neural Network
Title Failure Diagnosis Using Adaptive Neural Network
URI https://www.jstage.jst.go.jp/article/kikaic1979/68/675/68_675_3349/_article/-char/en
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japan Society of Mechanical Engineers Series C, 2002/11/25, Vol.68(675), pp.3349-3354
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1884-8354
  dateEnd: 20081231
  omitProxy: true
  ssIdentifier: ssib005439748
  issn: 0387-5024
  databaseCode: KQ8
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBbp9tIeSp_0jQ-9FWdly7akY2h3Sbc0S8GBpRcjyTYkYZOlSQ67v6Y_tTOSbCu0h-3SixOMZScazedvRvMg5EOb13nemhzQTxVxJhMNKpXVsUwpM7TN0kxjNvK3WTGdZ2cX-cVo9CuIWtrv9Njc_DWv5C5ShXMgV8yS_QfJ9jeFE_Ad5AtHkDAcbyXjU7XAqHLALRsvt9h-dBEAk1pd2ZAgLL0BMpi5WO-QiJZDn_BtFydwBi_OdR_HibExDeYFWzF2dQu3iC5gXQ_e1dnJj7mFi8Vqv-kdNtPJuUV3bBrWewfOv34p7elyc7m5Vgceh8EyLW_7UwIQw9q9OXV50uPGgawQWYwOpxCFCxGstoLnAagy5qqa-hc08yP_AH94s4LEVouVWphxIcbDuIOC2l5clbswkVxWhajgkd0Hjqu6qzD5DdbaPXI_5cBlcNv_e0BgsR9iWMAOzefDTGPGw33rFAz_gJADewObPEBE5IeBgQp8MGODwQ40IxNsIGAp1vqUA0LjvXFrtvcyAhsX0js_HDcBCkhdz3AvGF_JFCbv-HDqgJMtwULpohst4Sofk0feUoomboaekNFSPSUPg_qZz8ixV4CoV4DIKkDUKUDkFCDyCvCczE9Pyk_T2HcAiZdgWOxiJgw3OgUsqevcJIrRhmeyEbTl2EehVYXGvi0yqZXUQoiGtppq2pqUJ4lpJHtBjtabdfOSRFRJZcD81nnLMRZANkbDzNYS-LviKX1FPrt_W125Mi_VndbJ6_9zmzfkgW07ZH19b8nR7ue-eQfsd6ff2wX4G_KcoG8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+Diagnosis+Using+Adaptive+Neural+Network&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+C&rft.au=NEZU%2C+Kikuo&rft.au=SHAO%2C+Yimin&rft.au=TOKITO%2C+Tomoya&rft.date=2002&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5024&rft.eissn=1884-8354&rft.volume=68&rft.issue=675&rft.spage=3349&rft.epage=3354&rft_id=info:doi/10.1299%2Fkikaic.68.3349&rft.externalDocID=article_kikaic1979_68_675_68_675_3349_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5024&client=summon