Failure Diagnosis Using Adaptive Neural Network
Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-m...
Saved in:
Published in | Transactions of the Japan Society of Mechanical Engineers Series C Vol. 68; no. 675; pp. 3349 - 3354 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
The Japan Society of Mechanical Engineers
2002
|
Subjects | |
Online Access | Get full text |
ISSN | 0387-5024 1884-8354 |
DOI | 10.1299/kikaic.68.3349 |
Cover
Abstract | Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-mean-square (LMS) algorithm and adaptive neural network under heavy environment noise conditions. Experiment results have shown that using adaptive neural network is an effective means to extract early symptoms of machine fault under heavy environment noises and low rotating speed conditions. |
---|---|
AbstractList | Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for improving the signal to noise ratio by the adaptive neural network. This paper has made a comparison of failure detect-ability between least-mean-square (LMS) algorithm and adaptive neural network under heavy environment noise conditions. Experiment results have shown that using adaptive neural network is an effective means to extract early symptoms of machine fault under heavy environment noises and low rotating speed conditions. |
Author | SHAO, Yimin TOKITO, Tomoya NEZU, Kikuo |
Author_xml | – sequence: 1 fullname: NEZU, Kikuo – sequence: 1 fullname: SHAO, Yimin – sequence: 1 fullname: TOKITO, Tomoya |
BookMark | eNo9z7FOwzAUhWELFYlQujLnBZLauXZsj1WhgKhgoXN07TjBTUgqOwXx9oAKTN9ydKT_ksyGcXCEXDOas0LrZec79DYvVQ7A9RlJmFI8UyD4jCQUlMwELfgFWcToDaVUQ6lBJWS5Qd8fg0tvPLbDGH1Md9EPbbqq8TD5d5c-uWPA_pvpYwzdFTlvsI9u8euc7Da3L-v7bPt897BebbM90zBloKy0pmisqGthGQJ1kmunaCPLgvIGS8NAgGY1aqOUcrQx1NDGFpIx6zTMyePpdx8nbF11CP4Nw2eFYfK2d9Wpl2mpq1JVpRR__OT_r-wrhsoN8AUGHVbG |
ContentType | Journal Article |
Copyright | The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: The Japan Society of Mechanical Engineers |
DOI | 10.1299/kikaic.68.3349 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1884-8354 |
EndPage | 3354 |
ExternalDocumentID | article_kikaic1979_68_675_68_675_3349_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF |
ID | FETCH-LOGICAL-j193t-38c7cb2fc5dd5c1a30e749e80f76204fa6b135391da9b888e0fb0b0fc2711ce93 |
ISSN | 0387-5024 |
IngestDate | Wed Sep 03 06:08:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 675 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j193t-38c7cb2fc5dd5c1a30e749e80f76204fa6b135391da9b888e0fb0b0fc2711ce93 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/kikaic1979/68/675/68_675_3349/_article/-char/en |
PageCount | 6 |
ParticipantIDs | jstage_primary_article_kikaic1979_68_675_68_675_3349_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2002-00-00 |
PublicationDateYYYYMMDD | 2002-01-01 |
PublicationDate_xml | – year: 2002 text: 2002-00-00 |
PublicationDecade | 2000 |
PublicationTitle | Transactions of the Japan Society of Mechanical Engineers Series C |
PublicationTitleAlternate | JSMET |
PublicationYear | 2002 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | (2) Shao, Y. and Nezu, K., "An On-Line Monitoring and Diagnostic Method of Rolling Element Bearing with AI", Trans. Soc. Instrument Control Eng., 32-8 (1996), 1287-1293. (6) 西川緯一•北村新三,ニューラルネットと計測制御,(1995),1-220,朝倉書店. (1) Shao, Y. and Nezu, K., "Self-aligning Roller Bearing Fault•Detection Using Asynchronous Adaptive Noise Cancelling", JSME Int. J., SEIES C, 42-1 (1999), 33-43. (4) 辻井重男•久保田一•古川利博,適応信号処理,(1995),4-27,昭晃堂. (7) Stronge, W. J., Impact Mechanics, (2000), 86-115, Cambridge University Press. (5) 中島智,適応フィルタを用いたころがり軸受の音響診断,(1999),41-46,設備管理学会. (3) 前川健二•中島智•豊田利夫,衝撃振動を利用した機械部品の劣化度評価法,日本設備管理学会誌,9-3(1997),3-8. |
References_xml | – reference: (1) Shao, Y. and Nezu, K., "Self-aligning Roller Bearing Fault•Detection Using Asynchronous Adaptive Noise Cancelling", JSME Int. J., SEIES C, 42-1 (1999), 33-43. – reference: (5) 中島智,適応フィルタを用いたころがり軸受の音響診断,(1999),41-46,設備管理学会. – reference: (3) 前川健二•中島智•豊田利夫,衝撃振動を利用した機械部品の劣化度評価法,日本設備管理学会誌,9-3(1997),3-8. – reference: (4) 辻井重男•久保田一•古川利博,適応信号処理,(1995),4-27,昭晃堂. – reference: (2) Shao, Y. and Nezu, K., "An On-Line Monitoring and Diagnostic Method of Rolling Element Bearing with AI", Trans. Soc. Instrument Control Eng., 32-8 (1996), 1287-1293. – reference: (7) Stronge, W. J., Impact Mechanics, (2000), 86-115, Cambridge University Press. – reference: (6) 西川緯一•北村新三,ニューラルネットと計測制御,(1995),1-220,朝倉書店. |
SSID | ssib000936938 ssib012348313 ssib023160640 ssj0000578942 ssib002223792 ssib006634346 ssib020472911 ssib003171064 ssib005439748 ssj0000608103 ssib002222544 ssib002252316 |
Score | 1.6105845 |
Snippet | Improving signal to noise ratio is a key problem to detect early faults of machinery under environment noise conditions. An effective method is presented for... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 3349 |
SubjectTerms | Adaptive Filter Machine Fault Neural Network |
Title | Failure Diagnosis Using Adaptive Neural Network |
URI | https://www.jstage.jst.go.jp/article/kikaic1979/68/675/68_675_3349/_article/-char/en |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions of the Japan Society of Mechanical Engineers Series C, 2002/11/25, Vol.68(675), pp.3349-3354 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1884-8354 dateEnd: 20081231 omitProxy: true ssIdentifier: ssib005439748 issn: 0387-5024 databaseCode: KQ8 dateStart: 19790101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBbp9tIeSp_0jQ-9FWdly7akY2h3Sbc0S8GBpRcjyTYkYZOlSQ67v6Y_tTOSbCu0h-3SixOMZScazedvRvMg5EOb13nemhzQTxVxJhMNKpXVsUwpM7TN0kxjNvK3WTGdZ2cX-cVo9CuIWtrv9Njc_DWv5C5ShXMgV8yS_QfJ9jeFE_Ad5AtHkDAcbyXjU7XAqHLALRsvt9h-dBEAk1pd2ZAgLL0BMpi5WO-QiJZDn_BtFydwBi_OdR_HibExDeYFWzF2dQu3iC5gXQ_e1dnJj7mFi8Vqv-kdNtPJuUV3bBrWewfOv34p7elyc7m5Vgceh8EyLW_7UwIQw9q9OXV50uPGgawQWYwOpxCFCxGstoLnAagy5qqa-hc08yP_AH94s4LEVouVWphxIcbDuIOC2l5clbswkVxWhajgkd0Hjqu6qzD5DdbaPXI_5cBlcNv_e0BgsR9iWMAOzefDTGPGw33rFAz_gJADewObPEBE5IeBgQp8MGODwQ40IxNsIGAp1vqUA0LjvXFrtvcyAhsX0js_HDcBCkhdz3AvGF_JFCbv-HDqgJMtwULpohst4Sofk0feUoomboaekNFSPSUPg_qZz8ixV4CoV4DIKkDUKUDkFCDyCvCczE9Pyk_T2HcAiZdgWOxiJgw3OgUsqevcJIrRhmeyEbTl2EehVYXGvi0yqZXUQoiGtppq2pqUJ4lpJHtBjtabdfOSRFRJZcD81nnLMRZANkbDzNYS-LviKX1FPrt_W125Mi_VndbJ6_9zmzfkgW07ZH19b8nR7ue-eQfsd6ff2wX4G_KcoG8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+Diagnosis+Using+Adaptive+Neural+Network&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+C&rft.au=NEZU%2C+Kikuo&rft.au=SHAO%2C+Yimin&rft.au=TOKITO%2C+Tomoya&rft.date=2002&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5024&rft.eissn=1884-8354&rft.volume=68&rft.issue=675&rft.spage=3349&rft.epage=3354&rft_id=info:doi/10.1299%2Fkikaic.68.3349&rft.externalDocID=article_kikaic1979_68_675_68_675_3349_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5024&client=summon |