ゼータ対応の数理

Saved in:
Bibliographic Details
Published in応用数理 Vol. 34; no. 4; pp. 316 - 328
Main Author 今野, 紀雄
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本応用数理学会 25.12.2024
Subjects
Online AccessGet full text
ISSN2432-1982
DOI10.11540/bjsiam.34.4_316

Cover

Author 今野, 紀雄
Author_xml – sequence: 1
  fullname: 今野, 紀雄
  organization: 立命館大学理工学部
BookMark eNo9j81Kw0AUhQdRsNbu-xKJc-fe3CQ7pfgHBTfterjJTDWhrZJ049IKrt248xnUByj2YUL1NYxU3Jxz4BwOfAdqd34790r1QYcAEemjrKwLmYVIIVkE3lEdQ2gCSBOzr3p1XWqtETVTwh3Vb5ar5nHVLNeb98_N-rV5ePt6-fh-fjpUexOZ1r735101PjsdDS6C4dX55eBkGJSQaAmAIeXUSZRnae7ajE60piiJWRNQ7IxwwsYBtSvjMuI4Yo8xQu5o4hm76nj7W9YLufb2ripmUt1bqRZFPvV2S2ORLP1KC_Rf5TdS2VLwB78gUNE
ContentType Journal Article
Copyright 2024 日本応用数理学会
Copyright_xml – notice: 2024 日本応用数理学会
DOI 10.11540/bjsiam.34.4_316
DeliveryMethod fulltext_linktorsrc
EISSN 2432-1982
EndPage 328
ExternalDocumentID article_bjsiam_34_4_34_316_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j180a-161969da5cb9cd1963da004587604147d2a6862d1469d2db46756e3731cd4fe63
IngestDate Thu Apr 03 13:51:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j180a-161969da5cb9cd1963da004587604147d2a6862d1469d2db46756e3731cd4fe63
OpenAccessLink https://www.jstage.jst.go.jp/article/bjsiam/34/4/34_316/_article/-char/ja
PageCount 13
ParticipantIDs jstage_primary_article_bjsiam_34_4_34_316_article_char_ja
PublicationCentury 2000
PublicationDate 2024/12/25
PublicationDateYYYYMMDD 2024-12-25
PublicationDate_xml – month: 12
  year: 2024
  text: 2024/12/25
  day: 25
PublicationDecade 2020
PublicationTitle 応用数理
PublicationYear 2024
Publisher 一般社団法人 日本応用数理学会
Publisher_xml – name: 一般社団法人 日本応用数理学会
References [16] [第五作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. CTM/Zeta Correspondence. Quantum Studies: Mathematics and Foundations, Vol. 9, pp. 165–173, 2022.
[10] [第九作品:ゼータ対応] Y. Ide, T. Komatsu, N. Konno, and I. Sato. Metzler/Zeta Correspondence. Discrete Mathematics, Vol. 346, 113418, 2023.
[35] 黒川信重. 絶対数学原論. 現代数学社,京都, 2016.
[15] [第四作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Vertex-Face/Zeta Correspondence. Journal of Algebraic Combinatorics, Vol. 56, pp. 527–545, 2022.
[36] 町田拓也. 図で解る量子ウォーク入門. 森北出版,東京, 2015.
[4] S. Attal, F. Petruccione, and I. Sinayskiy. Open quantum walks on graphs. Physics Letters A, Vol. 376, pp. 1545–1548, 2012.
[23] 今野紀雄. 無限粒子系の科学. 講談社,東京, 2008.
[18] [第十二作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Alternating Walk/Zeta Correspondence. arXiv, arXiv:2302.09583, 2023.
[45] 竹居正登. 入門 確率過程. 森北出版,東京, 2020.
[37] 町田拓也. 量子ウォーク―基礎と数理―. 裳華房,東京, 2018.
[41] R. Portugal. Quantum Walks and Search Algorithms (2nd edition). Springer, New York, 2018.
[44] F. Spitzer. Principles of Random Walk (2nd edition). Springer, New York, 1976.
[9] R. Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth, Inc., California, 1988.
[40] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.
[22] 今野紀雄. 量子ウォークの数理. 産業図書,東京, 2008.
[33] [第六作品:ゼータ対応] N. Konno, and S. Tamura. Walk/Zeta Correspondence for quantum and correlated random walks. Yokohama Mathematical Journal, Vol. 67, pp. 125–152, 2021.
[1] J. Akahori, N. Konno, and I. Sato. Absolute Zeta functions for Zeta functions of quantum cellular automata. Quantum Information and Computation, Vol. 23, pp. 1261–1274, 2023.
[6] G. Chinta, J. Jorgenson, and A. Karlsson. Heat kernels on regular graphs and generalized Ihara zeta function formulas. Monatshefte fur Mathematik, Vol. 178, pp. 171–190, 2015.
[26] 今野紀雄. 量子ウォークによる時系列解析. 日本評論社,東京, 2020.
[20] [第七作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and S. Tamura. A generalized Grover/Zeta Correspondence. arXiv, arXiv:2201.03973, 2022.
[46] S. E. Venegas-Andraca. Quantum walks: A comprehensive review. Quantum Information Processing, Vol. 11, pp. 1015–1106, 2012.
[42] P. Ren, T. Aleksic, D. Emms, R. C. Wilson, and E. R. Hancock. Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Information Processing, Vol. 10, pp. 405–417, 2011.
[11] [第十作品:ゼータ対応] C. Kiumi, N. Konno, and Y. Oshima. IPS/Zeta correspondence for the Domany–Kinzel model. Interdisciplinary Information Sciences (in press), arXiv, arXiv:2206.03188, 2022.
[27] 今野紀雄. 量子探索―量子ウォークが拓く最先端アルゴリズム―. 近代科学社,東京, 2021.
[29] 今野紀雄. 量子ウォークからゼータ対応へ―ゼータ関数を通して眺める数理モデル―. 日本評論社,東京, 2022.
[2] 青山崇洋. 多重ゼータ関数と高次元ランダムウォーク. 応用数理, Vol. 33, No. 2, pp. 62–71, 2023.
[38] K. Manouchehri, and J. Wang. Physical Implementation of Quantum Walks. Springer, New York, 2014.
[24] N. Konno. Quantum walks. In Quantum Potential Theory (edited by U. Franz and M. Schurmann), Lecture Notes in Mathematics, Vol. 1954, pp. 309–452, Springer-Verlag, Heidelberg, 2008.
[8] E. Domany, and W. Kinzel. Equivalence of cellular automata to Ising models and directed percolation. Physical Review Letters, Vol. 53, pp. 311–314, 1984.
[32] N. Konno, and I. Sato. On the relation between quantum walks and zeta functions. Quantum Information Processing, Vol. 11, pp. 341–349, 2012.
[17] [第二作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Walk/Zeta Correspondence. Journal of Statistical Physics, Vol. 190, 36, 2023.
[43] R. B.シナジ. マルコフ連鎖から格子確率モデルへ. 丸善出版,東京, 2012.
[21] [第八作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and S. Tamura. Mahler/Zeta Correspondence. Quantum Information Processing, Vol. 21, 298, 2022.
[14] [第三作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. IPS/Zeta Correspondence. Quantum Information and Computation, Vol. 22, pp. 251–269, 2022.
[3] S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy. Open quantum random walks. Journal of Statistical Physics, Vol. 147, pp. 832–852, 2012.
[28] N. Konno. An analogue of the Riemann Hypothesis via quantum walks. Quantum Studies: Mathematics and Foundations, Vol. 9, pp. 367–379, 2022.
[13] [第一作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Grover/Zeta Correspondence based on the Konno-Sato theorem. Quantum Information Processing, Vol. 20, 268, 2021.
[39] J. McKee, and C. Smyth. Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity. Springer, Cham, 2021.
[34] 黒川信重. 絶対ゼータ関数論. 岩波書店,東京, 2016.
[25] 今野紀雄. 量子ウォーク. 森北出版,東京, 2014.
[12] [第零作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. A note on the Grover walk and the generalized Ihara zeta function of the one-dimensional integer lattice. Yokohama Mathematical Journal, Vol. 67, pp. 115–123, 2021.
[7] B. Clair. The Ihara zeta function of the infinite grid. Electronic Journal of Combinatorics, Vol. 21, Paper 2.16, 2014.
[31] 今野紀雄・井手勇介(共編著). 量子ウォークの新展開. 培風館,東京, 2019.
[30] N. Konno. On the relation between quantum walks and absolute zeta functions. Quantum Studies: Mathematics and Foundations, Vol. 11, pp. 147–157, 2024.
[5] F. Brunault, and W. Zudilin. Many Variations of Mahler Measures: A Lasting Symphony. Cambridge University Press, Cambridge, 2020.
[19] [第十一作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and K. Sato. Ronkin/Zeta Correspondence. arXiv, arXiv:2212.13704, 2022.
References_xml – reference: [46] S. E. Venegas-Andraca. Quantum walks: A comprehensive review. Quantum Information Processing, Vol. 11, pp. 1015–1106, 2012.
– reference: [45] 竹居正登. 入門 確率過程. 森北出版,東京, 2020.
– reference: [21] [第八作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and S. Tamura. Mahler/Zeta Correspondence. Quantum Information Processing, Vol. 21, 298, 2022.
– reference: [38] K. Manouchehri, and J. Wang. Physical Implementation of Quantum Walks. Springer, New York, 2014.
– reference: [12] [第零作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. A note on the Grover walk and the generalized Ihara zeta function of the one-dimensional integer lattice. Yokohama Mathematical Journal, Vol. 67, pp. 115–123, 2021.
– reference: [11] [第十作品:ゼータ対応] C. Kiumi, N. Konno, and Y. Oshima. IPS/Zeta correspondence for the Domany–Kinzel model. Interdisciplinary Information Sciences (in press), arXiv, arXiv:2206.03188, 2022.
– reference: [1] J. Akahori, N. Konno, and I. Sato. Absolute Zeta functions for Zeta functions of quantum cellular automata. Quantum Information and Computation, Vol. 23, pp. 1261–1274, 2023.
– reference: [4] S. Attal, F. Petruccione, and I. Sinayskiy. Open quantum walks on graphs. Physics Letters A, Vol. 376, pp. 1545–1548, 2012.
– reference: [9] R. Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth, Inc., California, 1988.
– reference: [25] 今野紀雄. 量子ウォーク. 森北出版,東京, 2014.
– reference: [43] R. B.シナジ. マルコフ連鎖から格子確率モデルへ. 丸善出版,東京, 2012.
– reference: [41] R. Portugal. Quantum Walks and Search Algorithms (2nd edition). Springer, New York, 2018.
– reference: [44] F. Spitzer. Principles of Random Walk (2nd edition). Springer, New York, 1976.
– reference: [2] 青山崇洋. 多重ゼータ関数と高次元ランダムウォーク. 応用数理, Vol. 33, No. 2, pp. 62–71, 2023.
– reference: [34] 黒川信重. 絶対ゼータ関数論. 岩波書店,東京, 2016.
– reference: [5] F. Brunault, and W. Zudilin. Many Variations of Mahler Measures: A Lasting Symphony. Cambridge University Press, Cambridge, 2020.
– reference: [27] 今野紀雄. 量子探索―量子ウォークが拓く最先端アルゴリズム―. 近代科学社,東京, 2021.
– reference: [39] J. McKee, and C. Smyth. Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity. Springer, Cham, 2021.
– reference: [22] 今野紀雄. 量子ウォークの数理. 産業図書,東京, 2008.
– reference: [35] 黒川信重. 絶対数学原論. 現代数学社,京都, 2016.
– reference: [6] G. Chinta, J. Jorgenson, and A. Karlsson. Heat kernels on regular graphs and generalized Ihara zeta function formulas. Monatshefte fur Mathematik, Vol. 178, pp. 171–190, 2015.
– reference: [8] E. Domany, and W. Kinzel. Equivalence of cellular automata to Ising models and directed percolation. Physical Review Letters, Vol. 53, pp. 311–314, 1984.
– reference: [14] [第三作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. IPS/Zeta Correspondence. Quantum Information and Computation, Vol. 22, pp. 251–269, 2022.
– reference: [37] 町田拓也. 量子ウォーク―基礎と数理―. 裳華房,東京, 2018.
– reference: [10] [第九作品:ゼータ対応] Y. Ide, T. Komatsu, N. Konno, and I. Sato. Metzler/Zeta Correspondence. Discrete Mathematics, Vol. 346, 113418, 2023.
– reference: [26] 今野紀雄. 量子ウォークによる時系列解析. 日本評論社,東京, 2020.
– reference: [36] 町田拓也. 図で解る量子ウォーク入門. 森北出版,東京, 2015.
– reference: [18] [第十二作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Alternating Walk/Zeta Correspondence. arXiv, arXiv:2302.09583, 2023.
– reference: [24] N. Konno. Quantum walks. In Quantum Potential Theory (edited by U. Franz and M. Schurmann), Lecture Notes in Mathematics, Vol. 1954, pp. 309–452, Springer-Verlag, Heidelberg, 2008.
– reference: [30] N. Konno. On the relation between quantum walks and absolute zeta functions. Quantum Studies: Mathematics and Foundations, Vol. 11, pp. 147–157, 2024.
– reference: [7] B. Clair. The Ihara zeta function of the infinite grid. Electronic Journal of Combinatorics, Vol. 21, Paper 2.16, 2014.
– reference: [32] N. Konno, and I. Sato. On the relation between quantum walks and zeta functions. Quantum Information Processing, Vol. 11, pp. 341–349, 2012.
– reference: [13] [第一作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Grover/Zeta Correspondence based on the Konno-Sato theorem. Quantum Information Processing, Vol. 20, 268, 2021.
– reference: [40] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.
– reference: [42] P. Ren, T. Aleksic, D. Emms, R. C. Wilson, and E. R. Hancock. Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Information Processing, Vol. 10, pp. 405–417, 2011.
– reference: [20] [第七作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and S. Tamura. A generalized Grover/Zeta Correspondence. arXiv, arXiv:2201.03973, 2022.
– reference: [28] N. Konno. An analogue of the Riemann Hypothesis via quantum walks. Quantum Studies: Mathematics and Foundations, Vol. 9, pp. 367–379, 2022.
– reference: [31] 今野紀雄・井手勇介(共編著). 量子ウォークの新展開. 培風館,東京, 2019.
– reference: [3] S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy. Open quantum random walks. Journal of Statistical Physics, Vol. 147, pp. 832–852, 2012.
– reference: [33] [第六作品:ゼータ対応] N. Konno, and S. Tamura. Walk/Zeta Correspondence for quantum and correlated random walks. Yokohama Mathematical Journal, Vol. 67, pp. 125–152, 2021.
– reference: [15] [第四作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Vertex-Face/Zeta Correspondence. Journal of Algebraic Combinatorics, Vol. 56, pp. 527–545, 2022.
– reference: [23] 今野紀雄. 無限粒子系の科学. 講談社,東京, 2008.
– reference: [19] [第十一作品:ゼータ対応] T. Komatsu, N. Konno, I. Sato, and K. Sato. Ronkin/Zeta Correspondence. arXiv, arXiv:2212.13704, 2022.
– reference: [29] 今野紀雄. 量子ウォークからゼータ対応へ―ゼータ関数を通して眺める数理モデル―. 日本評論社,東京, 2022.
– reference: [16] [第五作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. CTM/Zeta Correspondence. Quantum Studies: Mathematics and Foundations, Vol. 9, pp. 165–173, 2022.
– reference: [17] [第二作品:ゼータ対応] T. Komatsu, N. Konno, and I. Sato. Walk/Zeta Correspondence. Journal of Statistical Physics, Vol. 190, 36, 2023.
SSID ssj0003306486
ssib025294388
Score 2.004619
SourceID jstage
SourceType Publisher
StartPage 316
SubjectTerms ゼータ対応
ランダムウォーク
今野–佐藤の定理
量子ウォーク
Title ゼータ対応の数理
URI https://www.jstage.jst.go.jp/article/bjsiam/34/4/34_316/_article/-char/ja
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 応用数理, 2024/12/25, Vol.34(4), pp.316-328
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  databaseCode: KQ8
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  eissn: 2432-1982
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0003306486
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZW5cIFgQCVX_XAnFCWtT1x7KOzZFWBQEJqpd4iO8lKjURBsL1wo0icuXDjGYAHqOiJJ1kVXoOxk122_IgC0sryjseT2XzRzNjrmTB2i3ulnNI8UamoEjR1lTjyBIlU2vOG1h-NConCDx6qzW28t5PuDAafV04t7c_8sHrxy7ySf0GVaIRryJL9C2SXQolAfcKXWkKY2lNhDIUELSAfx45cdIgygSIFO4G8CB36arohDpYoCgwRR1BkYEbQF4luFzKX_DSKYPVv-AklKBDyHLSFwoDOQMejlYEtx3CEgqiGhnF1a0HEAoZdGnJ8GKIQHdmp1WDjlS32upMAK4MKuQxaBGZLn9tRK-JLY2ccp_1Z83hb7oJVUdAYTF_9NJpCgVIk3OgTdrvfBN1d3ZSIRlhyteLPZZd8_rOroFiVAPbt8133eChxiOVy4okC3D28ZcdZSiwxNMRcLoZChlzZUph-RmRKhRdp3H-0NGsiFQZlXxUuBAgyrPr08k9z0uPOD1pQONTS4mBxsDDGOlvn2bl-kbJhu-teYIPWXWTr84PD-avD-cHR8YdPx0fv5i_ff3n78eub15fY9qTYGm8m_Xs1kpbrkUsoyDfK1C6tvKnqYIJrF0J7cowj5JjVwoW8oZqcqKlF7cmXpqqRmeRVjdNGyctsbe_JXrPONlwjK89pXjpVmFbKOF9NM82zzHjUKK4w0_2Q8mlXPKU8_d28-h9zr7Gz3x_o62xt9my_uUHR48zfjNh8A2dlVfQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%82%BC%E3%83%BC%E3%82%BF%E5%AF%BE%E5%BF%9C%E3%81%AE%E6%95%B0%E7%90%86&rft.jtitle=%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86&rft.au=%E4%BB%8A%E9%87%8E%2C+%E7%B4%80%E9%9B%84&rft.date=2024-12-25&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%BF%9C%E7%94%A8%E6%95%B0%E7%90%86%E5%AD%A6%E4%BC%9A&rft.eissn=2432-1982&rft.volume=34&rft.issue=4&rft.spage=316&rft.epage=328&rft_id=info:doi/10.11540%2Fbjsiam.34.4_316&rft.externalDocID=article_bjsiam_34_4_34_316_article_char_ja