黒毛和種牛の肥育時期による第一胃液性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現について
肥育牛では増体や肉質向上を目的として長期間にわたって濃厚飼料が多給され,その結果,第一胃液pHの低下により亜急性第一胃アシドーシス (SARA) や代謝性疾患が発生しているが,黒毛和種肥育牛では第一胃液性状を検討した報告は少なく,第一胃の細菌叢構成や粘膜上皮の遺伝子発現については不明な点が多い.そのため,本研究では黒毛和種牛の肥育時期による第一胃液の性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現の変化を明らかにすることを目的とした.試験1では通常管理下の黒毛和種去勢牛9頭を用いて肥育前期 (10〜14カ月齢),中期 (15〜22カ月齢) および後期 (23〜30カ月齢) に第一胃液pHを連続...
Saved in:
Published in | 産業動物臨床医学雑誌 Vol. 13; no. 4; pp. 123 - 135 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
日本家畜臨床学会 ・ 大動物臨床研究会・九州沖縄産業動物臨床研究会
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1884-684X 2187-2805 |
DOI | 10.4190/jjlac.13.123 |
Cover
Abstract | 肥育牛では増体や肉質向上を目的として長期間にわたって濃厚飼料が多給され,その結果,第一胃液pHの低下により亜急性第一胃アシドーシス (SARA) や代謝性疾患が発生しているが,黒毛和種肥育牛では第一胃液性状を検討した報告は少なく,第一胃の細菌叢構成や粘膜上皮の遺伝子発現については不明な点が多い.そのため,本研究では黒毛和種牛の肥育時期による第一胃液の性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現の変化を明らかにすることを目的とした.試験1では通常管理下の黒毛和種去勢牛9頭を用いて肥育前期 (10〜14カ月齢),中期 (15〜22カ月齢) および後期 (23〜30カ月齢) に第一胃液pHを連続測定し,フィステル孔より第一胃液を採材して各種性状と次世代シークエンス法による細菌叢の解析を行った.その結果,第一胃液pHは肥育時期の進行に伴い有意 (p < 0.05) に低下し,リポポリサッカライド (LPS) は中期と後期に前期に比べて有意 (p < 0.05) な高値を示した.また,Firmicutes門の構成比は中期に前期に比べて有意 (p < 0.05) な低値を示した.LPS活性値の増加と主にセルロース分解菌構成比の低下によるFirmicutes門構成比の低下は,肥育時期の進行に伴う濃厚飼料の増給と第一胃液pHの低下による変化と考えられた.これらのことから,黒毛和種牛の肥育中期や後期には,第一胃液pHの低下,LPSの産生増加,セルロース分解菌構成比の減少など濃厚飼料多給に伴い第一胃内環境が大きく変化すると考えられた.試験2では試験1と同じ供試牛を用い,pHと各種性状および第一胃液,第一胃食渣および第二胃液の細菌叢を解析した.その結果,第一胃液pHは第二胃液pHに比べて前期と中期に有意 (p < 0.05) な低値,後期には有意 (p < 0.05) な高値を示した.また,細菌叢構成は第一胃液と第二胃液では類似していたが,第一胃食渣では第一胃液や第二胃液と異なる傾向がみられた.後期に第一胃液pHが第二胃液pHに比べて高値を示したことは,第一胃粘膜上皮からの重炭酸イオン供給が増加したことが要因と考えられた.このことから,肥育後期の黒毛和種牛では,長期的な濃厚飼料多給による第一胃液pHの低下に対して緩衝作用を促進して適応していることが示唆された.試験3では肥育中期と後期の黒毛和種去勢牛各3頭を用い,通常の飼料を給与した対照区 (CON区) と濃厚飼料割合を約10%増加した濃厚飼料多給区 (HC区) に区分し,第一胃液のpH,各種性状および細菌叢を解析した.その結果,第一胃液pHは中期ではHC区でCON区に比べて有意 (p < 0.05) な低値を示し,後期では両区とも重度のSARA状態を呈し,有意差がみられなかった.これらのことから,黒毛和種牛は肥育後期においても中期に比べ,濃厚飼料割合の増加による第一胃液pHの変動が制御されていることが示唆された.試験4では試験1と同じ供試牛を用い,各肥育時期にフィステル孔を介し第一胃粘膜上皮を採取し,マイクロアレイ法により網羅的遺伝子解析を行った.その結果,輸送関連遺伝子であるSLC family遺伝子は,中期に前期に比べてdown-regulated (11/13),後期に中期に比べup-regulated (12/19) と判定されるものが多く,VFA輸送体およびSCFA-/HCO3-交換輸送体であるSLC26A3遺伝子の発現量は,中期に前期に比べて有意 (p < 0.05) に低下し,後期には中期に比べて有意 (p < 0.05) に増加した.このことから,肥育後期の黒毛和種牛では第一胃粘膜上皮からのVFA吸収と第一胃内への重炭酸イオン分泌が促進され,長期間の濃厚飼料多給に適応している可能性が示唆された.本研究によって得られた所見は,黒毛和種肥育牛における健康の維持と代謝性疾患の予防に寄与すると考えられた. |
---|---|
AbstractList | 肥育牛では増体や肉質向上を目的として長期間にわたって濃厚飼料が多給され,その結果,第一胃液pHの低下により亜急性第一胃アシドーシス (SARA) や代謝性疾患が発生しているが,黒毛和種肥育牛では第一胃液性状を検討した報告は少なく,第一胃の細菌叢構成や粘膜上皮の遺伝子発現については不明な点が多い.そのため,本研究では黒毛和種牛の肥育時期による第一胃液の性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現の変化を明らかにすることを目的とした.試験1では通常管理下の黒毛和種去勢牛9頭を用いて肥育前期 (10〜14カ月齢),中期 (15〜22カ月齢) および後期 (23〜30カ月齢) に第一胃液pHを連続測定し,フィステル孔より第一胃液を採材して各種性状と次世代シークエンス法による細菌叢の解析を行った.その結果,第一胃液pHは肥育時期の進行に伴い有意 (p < 0.05) に低下し,リポポリサッカライド (LPS) は中期と後期に前期に比べて有意 (p < 0.05) な高値を示した.また,Firmicutes門の構成比は中期に前期に比べて有意 (p < 0.05) な低値を示した.LPS活性値の増加と主にセルロース分解菌構成比の低下によるFirmicutes門構成比の低下は,肥育時期の進行に伴う濃厚飼料の増給と第一胃液pHの低下による変化と考えられた.これらのことから,黒毛和種牛の肥育中期や後期には,第一胃液pHの低下,LPSの産生増加,セルロース分解菌構成比の減少など濃厚飼料多給に伴い第一胃内環境が大きく変化すると考えられた.試験2では試験1と同じ供試牛を用い,pHと各種性状および第一胃液,第一胃食渣および第二胃液の細菌叢を解析した.その結果,第一胃液pHは第二胃液pHに比べて前期と中期に有意 (p < 0.05) な低値,後期には有意 (p < 0.05) な高値を示した.また,細菌叢構成は第一胃液と第二胃液では類似していたが,第一胃食渣では第一胃液や第二胃液と異なる傾向がみられた.後期に第一胃液pHが第二胃液pHに比べて高値を示したことは,第一胃粘膜上皮からの重炭酸イオン供給が増加したことが要因と考えられた.このことから,肥育後期の黒毛和種牛では,長期的な濃厚飼料多給による第一胃液pHの低下に対して緩衝作用を促進して適応していることが示唆された.試験3では肥育中期と後期の黒毛和種去勢牛各3頭を用い,通常の飼料を給与した対照区 (CON区) と濃厚飼料割合を約10%増加した濃厚飼料多給区 (HC区) に区分し,第一胃液のpH,各種性状および細菌叢を解析した.その結果,第一胃液pHは中期ではHC区でCON区に比べて有意 (p < 0.05) な低値を示し,後期では両区とも重度のSARA状態を呈し,有意差がみられなかった.これらのことから,黒毛和種牛は肥育後期においても中期に比べ,濃厚飼料割合の増加による第一胃液pHの変動が制御されていることが示唆された.試験4では試験1と同じ供試牛を用い,各肥育時期にフィステル孔を介し第一胃粘膜上皮を採取し,マイクロアレイ法により網羅的遺伝子解析を行った.その結果,輸送関連遺伝子であるSLC family遺伝子は,中期に前期に比べてdown-regulated (11/13),後期に中期に比べup-regulated (12/19) と判定されるものが多く,VFA輸送体およびSCFA-/HCO3-交換輸送体であるSLC26A3遺伝子の発現量は,中期に前期に比べて有意 (p < 0.05) に低下し,後期には中期に比べて有意 (p < 0.05) に増加した.このことから,肥育後期の黒毛和種牛では第一胃粘膜上皮からのVFA吸収と第一胃内への重炭酸イオン分泌が促進され,長期間の濃厚飼料多給に適応している可能性が示唆された.本研究によって得られた所見は,黒毛和種肥育牛における健康の維持と代謝性疾患の予防に寄与すると考えられた. |
Author | 尾形, 透 |
Author_xml | – sequence: 1 fullname: 尾形, 透 organization: 岩手県農業共済組合 葛巻家畜診療所 |
BookMark | eNo9kEtLAlEAhS9RkJm7_sbYfc1rFSG9QGhT0G64zqMazELdtPOOUWaB0qrSCKIXZBYWIRb9mdG5479IK9ycszgf3-JMgfHMbsYGYAbBOEU6nHXdNDPjiMQRJmMggpGmSliD8jiIIE2jkqLRjUkQy-VcCCHBVJURjYCj_udZ8FLrnZ2Kx6Y4rvm8GXp3odcKLrygfu3zJ98r-d6JaDS67UJYLAYfraDwIMofPn8U769h5bRXuQkeToJS1eflIczfRrBonYeH9W67LC6bA3Ofd7pfV73nqrjoiMr3UM5vfX7g8_tpMOGwdM6O_XcUrC8urCWWpeTq0kpiPim5SNWZpGAdMQplouopDdoagthiSFaJykyKmexQDEmKYWppDlEsy1YosVKYWI7JTJU6JArm_rxuLs82bWMvu73DsvsGy-a3zbRt_L5oIGLQYQyuHC3mFssaLiM_gV2fVA |
ContentType | Journal Article |
Copyright | 2024 日本家畜臨床学会・大動物臨床研究会 |
Copyright_xml | – notice: 2024 日本家畜臨床学会・大動物臨床研究会 |
DOI | 10.4190/jjlac.13.123 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2187-2805 |
EndPage | 135 |
ExternalDocumentID | article_jjlac_13_4_13_123_article_char_ja |
GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS JSF KQ8 MOJWN RJT |
ID | FETCH-LOGICAL-j179a-6291a405379b80e8102da15737ac42a5f4203ba24d8f36dde643db23dfcac74f3 |
ISSN | 1884-684X |
IngestDate | Wed Sep 03 06:30:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j179a-6291a405379b80e8102da15737ac42a5f4203ba24d8f36dde643db23dfcac74f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjlac/13/4/13_123/_article/-char/ja |
PageCount | 13 |
ParticipantIDs | jstage_primary_article_jjlac_13_4_13_123_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 産業動物臨床医学雑誌 |
PublicationTitleAlternate | 産業動物臨床医誌 |
PublicationYear | 2024 |
Publisher | 日本家畜臨床学会 ・ 大動物臨床研究会・九州沖縄産業動物臨床研究会 |
Publisher_xml | – name: 日本家畜臨床学会 ・ 大動物臨床研究会・九州沖縄産業動物臨床研究会 |
References | 14. Khafipour E, et al.:A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation, J Dairy Sci, 92, 1060-1070 (2009) 17. Shi Y, Weimer PJ:Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture, Appl Environ Microbiol, 58, 2583-2591 (1992) 43. Hollmann M, et al.:Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet, PLoS One, 8, e81602 (2013) 42. Sgorlon S, et al.:Variation of starch and fat in the diet affects metabolic status and oxidative stress in ewes, Small Ruminant Res, 74, 123-129 (2008) 6. Nagata R, et al.:Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls, J Dairy Sci, 101, 4424-4436 (2018) 25. Falk M, et al.:A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation, J Dairy Sci, 99, 1951-1955 (2016) 7. Petri RM, et al.:Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge, PLoS One, 8, e83424 (2013) 32. Steele MA, et al.:Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme, J Dairy Sci, 95, 318-327 (2011) 22. Dado RG, Allen MS:Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal pH of cattle, J Dairy Sci. 76, 1589-1600 (1993) 1. Shirouchi B, et al.:Fatty acid profiles and adipogenic gene expression of various fat depots in Japanese Black and Holstein steers, Meat Sci, 96, 157-164 (2014) 9. Kim YH, et al.:Effects of dietary forage and calf starter on ruminal pH and transcriptomic adaptation of the rumen epithelium in Holstein calves during the weaning transition, Physiol Genomics, 48, 803 (2016) 20. Schären M, et al.:Alterations in the rumen liquid-, particle- and epithelium-associated microbiota of dairy cows during the transition from a silage- and concentrate-based ration to pasture in spring, Front Microbiol, 8, 744 (2017) 24. Hummel J, et al.:Physical characteristics of reticuloruminal contents of oxen in relation to forage type and time after feeding, J Anim Physiol Anim Nutr, (Berl,) 93, 209-220 (2009) 36. Zhao K, et al.:Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle, BMC Genomics, 18, 976 (2017) 10. Steele MA, et al.:The periparturient period is associated with structural and transcriptomic adaptations of rumen papillae in dairy cattle, J Dairy Sci, 98, 2583-2595 (2015) 27. Merry RJ, MacAllan AB:A comparison of the chemicalcomposition of mixed bacteria harvested from liquid and solidfraction of rumen digesta, Br J Nutr, 50, 701-709 (1983) 11. Chen Y, et al.:Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet, Appl Environ Microbiol, 77, 5770-5781 (2011) 34. Wang H, et al.:Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows, Anim Prod Sci, 55, 189-193 (2015) 18. Nagata R, et al.:Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls, J Dairy Sci, 101, 4424-4436 (2017) 12. Wetzels SU, et al.:Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle, Front Microbiol, 7, 274 (2016) 23. Duffield T, et al.:Comparison of techniques for measurement of rumen pH in lactating dairy cows, J Dairy Sci, 87, 59-66 (2004) 5. Pitta DW, et al.:Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets, Microb Ecol, 59, 511-522 (2010) 26. Kim YH, et al.:Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet, BMC Vet Res, 14, 310 (2018) 31. Bevans DW, et al.:Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle, J Anim Sci, 83, 1116-1132 (2005) 33. Sato S:Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring, Anim Sci J, 87, 168-177 (2016) 15. Cameron PJ, et al.:Relationship between Japanese beef marbling standard and intramuscular lipid in the M. longissimus thoracis of Japanese Black and American Wagyu cattle, Meat Sci, 38, 361-364 (1994) 4. Enemark JMD:The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA);a review, Vet J, 176, 32-43 (2008) 41. Abaker JA, et al.:Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet, J Dairy Sci, 100, 666-678 (2017) 3. Cho SJ, et al.:16S rDNA analysis of bacterial diversity in three fractions of cow rumen, J Microbiol Biotechnol. 16, 92-101 (2006) 13. Allen MS:Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber, J dairy Sci, 80, 1447-1462 (1997) 35. Aschenbach JR, et al.:Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep, Am J Physiol-Gastr L 296, G1098-G1107 (2009) 39. Guo Y, et al.:Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp, J Anim Sci Biotech, 4, 31 (2013) 16. Oka A, et al.:Influence of vitamin A on the quality of beef from the Tajima strain of Japanese Black cattle, Meat Sci, 48, 159-167 (1998) 30. Steele MA, et al.:Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis, Am J Physiol- Regul I, 300, R1515-R1523 (2011) 37. Benedeti PDB, et al.:Effects of grain processing methods on the expression of genes involved in volatile fatty acid transport and pH regulation, and keratinization in rumen epithelium of beef cattle, PloS one, 13, e0198963 (2018) 21. Dijkstra J, et al.:Ruminal pH regulation and nutritional consequences of low pH, Anim Feed Sci Tech, 172, 22-33 (2012) 40. Penner GB, et al.:Ruminant nutrition symposium; molecular adaptation of ruminal epithelia to highly fermentable diets, J Anim Sci, 89, 1108-1119 (2011) 19. De Mulder T, et al.:Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural, FEMS Microbiol Ecol, 93, fiw251 (2017) 38. LaMonte G, et al.:Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress, Cancer Metabo, 1, 23 (2013) 29. Klieve AV, et al.:Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet, J Appl Microbiol, 103, 2065-2073 (2007) 28. Emmanuelle H, et al.:Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates, Fronti Microbiol, 9, 2558 (2018) 8. Mao SY, et al.:Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing, Anaerobe, 24, 12-19 (2013) 2. Nagaraja TG, Titgemeyer EC:Ruminal acidosis in beef cattle; the current microbiological and nutritional outlook, J Dairy Sci, 90, E17-E38 (2007) |
References_xml | – reference: 2. Nagaraja TG, Titgemeyer EC:Ruminal acidosis in beef cattle; the current microbiological and nutritional outlook, J Dairy Sci, 90, E17-E38 (2007) – reference: 3. Cho SJ, et al.:16S rDNA analysis of bacterial diversity in three fractions of cow rumen, J Microbiol Biotechnol. 16, 92-101 (2006) – reference: 7. Petri RM, et al.:Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge, PLoS One, 8, e83424 (2013) – reference: 13. Allen MS:Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber, J dairy Sci, 80, 1447-1462 (1997) – reference: 15. Cameron PJ, et al.:Relationship between Japanese beef marbling standard and intramuscular lipid in the M. longissimus thoracis of Japanese Black and American Wagyu cattle, Meat Sci, 38, 361-364 (1994) – reference: 8. Mao SY, et al.:Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing, Anaerobe, 24, 12-19 (2013) – reference: 28. Emmanuelle H, et al.:Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates, Fronti Microbiol, 9, 2558 (2018) – reference: 23. Duffield T, et al.:Comparison of techniques for measurement of rumen pH in lactating dairy cows, J Dairy Sci, 87, 59-66 (2004) – reference: 6. Nagata R, et al.:Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls, J Dairy Sci, 101, 4424-4436 (2018) – reference: 24. Hummel J, et al.:Physical characteristics of reticuloruminal contents of oxen in relation to forage type and time after feeding, J Anim Physiol Anim Nutr, (Berl,) 93, 209-220 (2009) – reference: 27. Merry RJ, MacAllan AB:A comparison of the chemicalcomposition of mixed bacteria harvested from liquid and solidfraction of rumen digesta, Br J Nutr, 50, 701-709 (1983) – reference: 34. Wang H, et al.:Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows, Anim Prod Sci, 55, 189-193 (2015) – reference: 41. Abaker JA, et al.:Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet, J Dairy Sci, 100, 666-678 (2017) – reference: 21. Dijkstra J, et al.:Ruminal pH regulation and nutritional consequences of low pH, Anim Feed Sci Tech, 172, 22-33 (2012) – reference: 22. Dado RG, Allen MS:Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal pH of cattle, J Dairy Sci. 76, 1589-1600 (1993) – reference: 4. Enemark JMD:The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA);a review, Vet J, 176, 32-43 (2008) – reference: 16. Oka A, et al.:Influence of vitamin A on the quality of beef from the Tajima strain of Japanese Black cattle, Meat Sci, 48, 159-167 (1998) – reference: 18. Nagata R, et al.:Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls, J Dairy Sci, 101, 4424-4436 (2017) – reference: 29. Klieve AV, et al.:Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet, J Appl Microbiol, 103, 2065-2073 (2007) – reference: 35. Aschenbach JR, et al.:Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep, Am J Physiol-Gastr L 296, G1098-G1107 (2009) – reference: 17. Shi Y, Weimer PJ:Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture, Appl Environ Microbiol, 58, 2583-2591 (1992) – reference: 30. Steele MA, et al.:Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis, Am J Physiol- Regul I, 300, R1515-R1523 (2011) – reference: 31. Bevans DW, et al.:Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle, J Anim Sci, 83, 1116-1132 (2005) – reference: 38. LaMonte G, et al.:Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress, Cancer Metabo, 1, 23 (2013) – reference: 14. Khafipour E, et al.:A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation, J Dairy Sci, 92, 1060-1070 (2009) – reference: 42. Sgorlon S, et al.:Variation of starch and fat in the diet affects metabolic status and oxidative stress in ewes, Small Ruminant Res, 74, 123-129 (2008) – reference: 37. Benedeti PDB, et al.:Effects of grain processing methods on the expression of genes involved in volatile fatty acid transport and pH regulation, and keratinization in rumen epithelium of beef cattle, PloS one, 13, e0198963 (2018) – reference: 43. Hollmann M, et al.:Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet, PLoS One, 8, e81602 (2013) – reference: 26. Kim YH, et al.:Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet, BMC Vet Res, 14, 310 (2018) – reference: 5. Pitta DW, et al.:Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets, Microb Ecol, 59, 511-522 (2010) – reference: 9. Kim YH, et al.:Effects of dietary forage and calf starter on ruminal pH and transcriptomic adaptation of the rumen epithelium in Holstein calves during the weaning transition, Physiol Genomics, 48, 803 (2016) – reference: 1. Shirouchi B, et al.:Fatty acid profiles and adipogenic gene expression of various fat depots in Japanese Black and Holstein steers, Meat Sci, 96, 157-164 (2014) – reference: 11. Chen Y, et al.:Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet, Appl Environ Microbiol, 77, 5770-5781 (2011) – reference: 25. Falk M, et al.:A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation, J Dairy Sci, 99, 1951-1955 (2016) – reference: 12. Wetzels SU, et al.:Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle, Front Microbiol, 7, 274 (2016) – reference: 39. Guo Y, et al.:Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp, J Anim Sci Biotech, 4, 31 (2013) – reference: 20. Schären M, et al.:Alterations in the rumen liquid-, particle- and epithelium-associated microbiota of dairy cows during the transition from a silage- and concentrate-based ration to pasture in spring, Front Microbiol, 8, 744 (2017) – reference: 10. Steele MA, et al.:The periparturient period is associated with structural and transcriptomic adaptations of rumen papillae in dairy cattle, J Dairy Sci, 98, 2583-2595 (2015) – reference: 33. Sato S:Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring, Anim Sci J, 87, 168-177 (2016) – reference: 32. Steele MA, et al.:Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme, J Dairy Sci, 95, 318-327 (2011) – reference: 40. Penner GB, et al.:Ruminant nutrition symposium; molecular adaptation of ruminal epithelia to highly fermentable diets, J Anim Sci, 89, 1108-1119 (2011) – reference: 36. Zhao K, et al.:Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle, BMC Genomics, 18, 976 (2017) – reference: 19. De Mulder T, et al.:Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural, FEMS Microbiol Ecol, 93, fiw251 (2017) |
SSID | ssj0003247514 ssib005210697 |
Score | 2.3723745 |
Snippet | 肥育牛では増体や肉質向上を目的として長期間にわたって濃厚飼料が多給され,その結果,第一胃液pHの低下により亜急性第一胃アシドーシス (SARA) や代謝性疾患が発... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 123 |
SubjectTerms | 第一胃性状 細菌叢 肥育牛 遺伝子発現 黒毛和種 |
Title | 黒毛和種牛の肥育時期による第一胃液性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現について |
URI | https://www.jstage.jst.go.jp/article/jjlac/13/4/13_123/_article/-char/ja |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 産業動物臨床医学雑誌, 2024, Vol.13(4), pp.123-135 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2187-2805 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003247514 issn: 1884-684X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA-lvvgiiorf9ME8lav52GR3HzfXHEVQEFro25HcXR4OqSLti0_NVbS2hZY-WVsRRG3BWqVKKVX8X-Tay_W_cGaSO3NSpRaOMJndmf3tTJKdye1uNO2mGYlqBYYd_EwqJCiODAuSB06hxnkQ8ZrphrRl_p277sgYuz3ujPf1_8zNWpqaDIcqj49cV3ISrwIP_IqrZP_Ds12lwAAa_AtH8DAcj-Vj3Ze65-nS0n1XVyVderrv4Kko6j7XldCVj4SQVGRD2EgcoQtLV05GeCQuJdJIFHVZ6lROpUCh6BAeaS7iz2e6J3CqBOqx8QfinpspBL7i1LpCZqZQIMcDwVSqRFAdJFTaC05NuNiiNDIp0NADw9Q9-58wOGKQgjjUo6yOwiKpyAhda0hSqKgO9H0Y8ahhap2jWTySAoSe32sWIFgHYYdQbj7cJw1MV2QZRWqxs-AyJ_OLkgSSnAVF0BaCdNAsnpchUS6CBA9KEysrqNN9t01CBkEDYhitCDcNdcoAzPmXOtbv17nkZ06XAJlHkRPAGOgojujQZkfhyuCkplKD1GsboA5SISOXH6eHcGqgaZCQ1GymsquRODLzhwegfLq8wK-EEd3JTmrfv7aeG6OFYAVXpBN7h2rEg0CVFyxhOD0Du517gLHcKG2mS9yzgM9M98v5M5ZgECpjLFG_Dw820x7qCvXszp7d-2WqVjbtMsMD1C13SnD1ZLkOKdwpi0MwjPNG7uV20LNMw83-yMfgEfIbnn6RoNvNdLkOwrmVBwMhcx0SyM7kU4qHR89qZ7JEdkCl7Z_T-urBee3Z4bfl1qfVg-WFZGMreb7ajLfajXftxnZrpdFae92MPzQbs83GfLK5ub873Z6Zae1st6bXk7mdZryRfP3cXlw4WHzTWp9vzS414zmsHH_pVk62X7Sfru3vziUvt0DzYby3__3VwcelZGUvWfyByuO3zfhJM35_QRsr-aPFkUL2qZdCHSKCoODCSBEw3FtKhsKoCUh7qoHpcJsHFWYFTsQsww4Di1VFZLsQkkEiVQ0tuxpVggpnkX1R6594MFG7pA1AAuTiR_IqFq-wkIcBE6FRdYxaVDVkZAWXNZHarfww3c-nfGwfXjm56FXtNN7n6cvba1r_5KOp2nVIZybDG3RB_AIBQhQC |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%BB%92%E6%AF%9B%E5%92%8C%E7%A8%AE%E7%89%9B%E3%81%AE%E8%82%A5%E8%82%B2%E6%99%82%E6%9C%9F%E3%81%AB%E3%82%88%E3%82%8B%E7%AC%AC%E4%B8%80%E8%83%83%E6%B6%B2%E6%80%A7%E7%8A%B6%E3%81%A8%E7%B4%B0%E8%8F%8C%E5%8F%A2%E6%A7%8B%E6%88%90%E3%81%8A%E3%82%88%E3%81%B3%E7%AC%AC%E4%B8%80%E8%83%83%E7%B2%98%E8%86%9C%E4%B8%8A%E7%9A%AE%E3%81%AE%E9%81%BA%E4%BC%9D%E5%AD%90%E7%99%BA%E7%8F%BE%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6&rft.jtitle=%E7%94%A3%E6%A5%AD%E5%8B%95%E7%89%A9%E8%87%A8%E5%BA%8A%E5%8C%BB%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E5%B0%BE%E5%BD%A2%2C+%E9%80%8F&rft.date=2024&rft.pub=%E6%97%A5%E6%9C%AC%E5%AE%B6%E7%95%9C%E8%87%A8%E5%BA%8A%E5%AD%A6%E4%BC%9A+%E3%83%BB+%E5%A4%A7%E5%8B%95%E7%89%A9%E8%87%A8%E5%BA%8A%E7%A0%94%E7%A9%B6%E4%BC%9A%E3%83%BB%E4%B9%9D%E5%B7%9E%E6%B2%96%E7%B8%84%E7%94%A3%E6%A5%AD%E5%8B%95%E7%89%A9%E8%87%A8%E5%BA%8A%E7%A0%94%E7%A9%B6%E4%BC%9A&rft.issn=1884-684X&rft.eissn=2187-2805&rft.volume=13&rft.issue=4&rft.spage=123&rft.epage=135&rft_id=info:doi/10.4190%2Fjjlac.13.123&rft.externalDocID=article_jjlac_13_4_13_123_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-684X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-684X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-684X&client=summon |