統計的公衆衛生サーベイランス
公衆衛生において,サーベイランスに基づく疾患の迅速な発見と対策は重要な課題の一つである.一方で,人命優先のためのスピードとトレードオフでデータの不完全性や報告遅れなどの問題があり,得られたデータを正確に読み解くための統計的知識が不可欠である.特にCOVID-19や次のパンデミックが喫緊の課題として迫っている現代において,その重要性は増している.本稿では,公衆衛生分野におけるサーベイランスとその時系列データを用いた統計的監視方法および変化の逐次的な検出方法について詳述する.特に,筆者らが注力してきた感染症のアウトブレイクの早期検知に世界的に用いられているFarrington アルゴリズムと空間ス...
        Saved in:
      
    
          | Published in | 日本統計学会誌 Vol. 55; no. 1; pp. 115 - 135 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Japanese | 
| Published | 
            一般社団法人 日本統計学会
    
        05.09.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0389-5602 2189-1478  | 
| DOI | 10.11329/jjssj.55.115 | 
Cover
| Abstract | 公衆衛生において,サーベイランスに基づく疾患の迅速な発見と対策は重要な課題の一つである.一方で,人命優先のためのスピードとトレードオフでデータの不完全性や報告遅れなどの問題があり,得られたデータを正確に読み解くための統計的知識が不可欠である.特にCOVID-19や次のパンデミックが喫緊の課題として迫っている現代において,その重要性は増している.本稿では,公衆衛生分野におけるサーベイランスとその時系列データを用いた統計的監視方法および変化の逐次的な検出方法について詳述する.特に,筆者らが注力してきた感染症のアウトブレイクの早期検知に世界的に用いられているFarrington アルゴリズムと空間スキャン統計について詳述する.また,サーベイランスの統計的性質を,誤警告の確率,検出遅延,検出成功確率などの指標を用いて評価する方法についても詳述する. | 
    
|---|---|
| AbstractList | 公衆衛生において,サーベイランスに基づく疾患の迅速な発見と対策は重要な課題の一つである.一方で,人命優先のためのスピードとトレードオフでデータの不完全性や報告遅れなどの問題があり,得られたデータを正確に読み解くための統計的知識が不可欠である.特にCOVID-19や次のパンデミックが喫緊の課題として迫っている現代において,その重要性は増している.本稿では,公衆衛生分野におけるサーベイランスとその時系列データを用いた統計的監視方法および変化の逐次的な検出方法について詳述する.特に,筆者らが注力してきた感染症のアウトブレイクの早期検知に世界的に用いられているFarrington アルゴリズムと空間スキャン統計について詳述する.また,サーベイランスの統計的性質を,誤警告の確率,検出遅延,検出成功確率などの指標を用いて評価する方法についても詳述する. | 
    
| Author | 川島 孝行 田上 悠太 米岡 大輔  | 
    
| Author_xml | – sequence: 1 fullname: 川島 孝行 organization: 東京科学大学 – sequence: 1 fullname: 米岡 大輔 organization: 国立健康危機管理研究機構国立感染症研究所 – sequence: 1 fullname: 田上 悠太 organization: 東京海洋大学  | 
    
| BookMark | eNo9j89Kw0AYxBepYKw9-hJC6n7Z_Uz2JFL8BwUvel422axmqVWyvXhtVHyAXtSDFDwoeBHpQfBtFkkew1LFy8z8GBiYVdIaXgxzQtaBdgFYJDatdc52EeeISySIIBEh8DhpkYCyecYtGq2QjnNFSikKCoKxgGzUs_fm5a5-uP6-eWumt830sZ48-fHMV1--uvfjZ1-9-urDjz_XyLJRA5d3_rxNTvZ2j3sHYf9o_7C30w8txEKFkCvFjeZGRIgZjSFOaCYQtcqTVFEhuIaEcc1RZ0ZkmlNjEFMGCoSODGVtsv27a91InebysizOVXklVTkqskEuF0clooSFAP432ZkqpVXsBxCmXzI | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 日本統計学会 | 
    
| Copyright_xml | – notice: 2025 日本統計学会 | 
    
| DOI | 10.11329/jjssj.55.115 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics | 
    
| EISSN | 2189-1478 | 
    
| EndPage | 135 | 
    
| ExternalDocumentID | article_jjssj_55_1_55_115_article_char_ja | 
    
| GroupedDBID | 2WC 3K4 5GY ABDBF ACGFO ACIWK AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS E3Z EBS EJD GX1 JSF JSH KQ8 OK1 OVT P2P RJT TN5 TR2 XSB  | 
    
| ID | FETCH-LOGICAL-j179a-1eaa4fd4f9255c071780c955dae8ba0994d1834d45dcf9cd40ff55b31a19d2f03 | 
    
| ISSN | 0389-5602 | 
    
| IngestDate | Tue Oct 21 15:01:00 EDT 2025 | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | Japanese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-j179a-1eaa4fd4f9255c071780c955dae8ba0994d1834d45dcf9cd40ff55b31a19d2f03 | 
    
| OpenAccessLink | https://www.jstage.jst.go.jp/article/jjssj/55/1/55_115/_article/-char/ja | 
    
| PageCount | 21 | 
    
| ParticipantIDs | jstage_primary_article_jjssj_55_1_55_115_article_char_ja | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025/09/05 | 
    
| PublicationDateYYYYMMDD | 2025-09-05 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: 2025/09/05 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 日本統計学会誌 | 
    
| PublicationTitleAlternate | 日本統計学会和文誌 | 
    
| PublicationYear | 2025 | 
    
| Publisher | 一般社団法人 日本統計学会 | 
    
| Publisher_xml | – name: 一般社団法人 日本統計学会 | 
    
| References | Sonesson, C. (2003). Evaluations of some exponentially weighted moving average methods, Journal of Applied Statistics, 30(10), 1115–1133. 高橋邦彦(2008).「疾病地図から疾病集積性へ」『保健医療科学』57(2), 86–92. Allévius, B. and Höhle, M. (2017). An expectation-based space-time scan statistic for zip-distributed data, arXiv preprint arXiv:1712.09188. Kulldorff, M., Huang, L., Pickle, L. and Duczmal, L. (2006). An elliptic spatial scan statistic, Statistics in Medicine, 25(22), 3929–3943. Patil, G. P. and Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots, Environmental and Ecological Statistics, 11, 183–197. Stroup, D. F. and Thacker, S. B. (1993). A bayesian approach to the detection of aberrations in public health surveillance data, Epidemiology, 4(5), 435–443. Choi, K. and Thacker, S. B. (1981). An evaluation of influenza mortality surveillance, 1962–1979: I. time series forecasts of expected pneumonia and influenza deaths, American Journal of Epidemiology, 113(3), 215–226. Radaelli, G. (1996). Detection of an unknown increase in the rate of a rare event, Journal of Applied Statistics, 23(1), 105–114. Openshaw, S., Charlton, M., Wymer, C. and Craft, A. (1987). A mark 1 geographical analysis machine for the automated analysis of point data sets, International Journal of Geographical Information System, 1(4), 335–358. Fricker, R. D., Jr., Hegler, B. L. and Dunfee, D. A. (2008). Comparing syndromic surveillance detection methods: Ears’versus a cusum-based methodology, Statistics in Medicine, 27(17), 3407–3429. Lawson, A. B. and Kleinman, K. (2005). Spatial and syndromic surveillance for public health. Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference, Statistics in Medicine, 14(8), 799–810. Cho, H. and Kirch, C. (2021). Data segmentation algorithms: Univariate mean change and beyond, Econometrics and Statistics. Salmon, M., Schumacher, D. and Höhle, M. (2016). Monitoring count time series in R: Aberration detection in public health surveillance, Journal of Statistical Software, 70(10), 1–35. doi: 10.18637/jss.v070.i10. URL https://www.jstatsoft.org/index.php/jss/article/view/v070i10. Page, E. S. (1954). Continuous inspection schemes, Biometrika, 41(1/2), 100–115. Reis, B. Y. and Mandl, K. D. (2003). Time series modeling for syndromic surveillance, BMC Medical Informatics and Decision Making, 3, 1–11. Neill, D., Moore, A. and Cooper, G. (2005). A bayesian spatial scan statistic, Advances in Neural Information Processing Systems, 18. Costagliola, D. (1994). When is the epidemic warning cut-off point exceeded?, European Journal of Epidemiology, 10, 475–476. Kulldorff, M. (1997). A spatial scan statistic, Communications in Statistics-Theory and Methods, 26(6), 1481–1496. Shewhart, W. A. (1930). Economic quality control of manufactured product, Bell System Technical Journal, 9(2), 364–389. doi: https://doi.org/10.1002/j.1538-7305.1930.tb00373.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1930.tb00373.x. Reynolds, M. R. and Stoumbos, Z. G. (2000). A general approach to modeling cusum charts for a proportion, Iie Transactions, 32(6), 515–535. Weatherall, J. A. C. and Haskey, J. C. (1976). Surveillance of malformations, British Medical Bulletin, 32(1), 39–44. Rogerson, P. A. and Yamada, I. (2004). Monitoring change in spatial patterns of disease: comparing univariate and multivariate cumulative sum approaches, Statistics in Medicine, 23(14), 2195–2214. Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, 4, 1–15. Frisén, M., Andersson, E. and Schiöler, L. (2010). Evaluation of multivariate surveillance, Journal of Applied Statistics, 37(12), 2089–2100. Unkel, S., Farrington, C. P., Garthwaite, P. H., Robertson, C. and Andrews, N. (2012). Statistical methods for the prospective detection of infectious disease outbreaks: a review, Journal of the Royal Statistical Society Series A: Statistics in Society, 175(1), 49–82. Frisén, M. (2009). Optimal sequential surveillance for finance, public health, and other areas, Sequential Analysis, 28(3), 310–337. Lee, M. and Jung, I. (2019). Modified spatial scan statistics using a restricted likelihood ratio for ordinal outcome data, Computational Statistics & Data Analysis, 133, 28–39. Helfenstein, U. (1986). Box-jenkins modelling of some viral infectious diseases, Statistics in Medicine, 5(1), 37–47. Sonesson, C. and Bock, D. (2003). A review and discussion of prospective statistical surveillance in public health, Journal of the Royal Statistical Society Series A: Statistics in Society, 166(1), 5–21. Serfling, R. E. (1963). Methods for current statistical analysis of excess pneumonia-influenza deaths, Public Health Reports, 78(6), 494. Lawson, A. B. (2013). Statistical methods in spatial epidemiology, John Wiley & Sons. Lucas, J. M. (1985). Counted data cusum’s, Technometrics, 27(2), 129–144. Kulldorff, M. (1999). Spatial scan statistics: Models, calculations, and applications, Scan Statistics and Applications, pages 303–322. Buckeridge, D. L. (2007). Outbreak detection through automated surveillance: a review of the determinants of detection, Journal of Biomedical Informatics, 40(4), 370–379. Frisén, M. and De Maré, J. (1991). Optimal surveillance, Biometrika, 78(2), 271–280. Assuncao, R., Costa, M., Tavares, A. and Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters, Statistics in Medicine, 25(5), 723–742. Levy, B. S. (1996). Toward a holistic approach to public health surveillance, American Journal of Public Health, 86(5), 624–625. Kulldorff, M., Huang, L. and Konty, K. (2009). A scan statistic for continuous data based on the normal probability model, International Journal of Health Geographics, 8, 1–9. Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses, The Annals of Mathematical Statistics, pages 181–187. Thacker, S. B., Qualters, J. R., Lee, L. M., Centers for Disease Control, Prevention, et al. (2012). Public health surveillance in the united states: evolution and challenges, MMWR Suppl, 61(3), 3–9. Praus, M., Schindel, F., Fescharek, R. and Schwarz, S. (1993). Alert systems for post-marketing surveillance of adverse drug reactions, Statistics in Medicine, 12(24), 2383–2393. German, R. R. (2000). Sensitivity and predictive value positive measurements for public health surveillance systems, Epidemiology, 11(6), 720–727. ISSN 1044-3983 (Print); 1044-3983 (Linking). doi: 10.1097/00001648-200011000-00020. Jung, I., Kulldorff, M. and Richard, O. J. (2010). A spatial scan statistic for multinomial data, Statistics in Medicine, 29(18), 1910–1918. 国立感染症研究所(2024). 超過死亡の迅速把握2024年3月31日までの報告, 2024年3月. URL https://www.niid.go.jp/niid/ja/from-idsc/493-guidelines/12636-excess-mortality-r-240331.html. Wessman, P. (1998). Some principles for surveillance adopted for multivariate processes with a common change point, Communications in Statistics-Theory and Methods, 27(5), 1143–1161. Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic, Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(1), 61–72. Noufaily, A., Enki, D. G., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2013). An improved algorithm for outbreak detection in multiple surveillance systems, Statistics in Medicine, 32(7), 1206–1222. Moran, P. A. P. (1948). The interpretation of statistical maps, Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243–251. Murff, H. J., Patel, V. L., Hripcsak, G. and Bates, D. W. (2003). Detecting adverse events for patient safety research: a review of current methodologies, Journal of Biomedical Informatics, 36(1–2), 131–143. Farrington, C. P., Andrews, N. J., Beale, A. D. and Catchpole, M. A. (1996). A statistical algorithm for the early detection of outbreaks of infectious disease, Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3), 547–563. 国立感染症研究所(2020). 超過死亡の推定に関するQ&A, 2020年8月. URL https://www.niid.go.jp/niid/ja/from-idsc/493-guidelines/9834-excess-mortality-qa-200831.html. Rahman, M. O., Yoneoka, D., Murano, Y., Yorifuji, T., Shoji, H., Gilmour, S., Yamamoto, Y. and Ota, E. (2023). Detecting geographical clusters of low birth weight and/or preterm birth in japan, Scientific Reports, 13(1), 1788. Yoneoka, D., Kawashima, T., Makiyama, K., Tanoue, Y., Nomura, S. and Eguchi, A. (2021). Geographically weighted generalized farrington algorithm for rapid outbreak detection over short data accumulation periods, Statistics in Medicine, 40(28), 6277–6294. Aue, A. and Kirch, C. (2024). The state of cumulative sum sequential changepoint testing 70 years after page, Biometrika, 111(2), 367–391. Lawson, A. B., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J.-F. and Bertollini, R. (1999). Disease mapping and risk assessment for public health. URL https://api.semanticscholar.org/CorpusID:70669438. Tango, T. (2008). A spatial scan statistic with a restricted likelihood ratio, Japanese Journal of Biometrics, 29(2), 75–95. 石岡文生,栗原考次(2012).「Echelon 解析に基づくスキャン法によるホットスポット検出について」. Truong, C., Oudre, L. and Vayatis, N. (2020). Selective review of offline change point detection methods, Signal Processing, 167, 107299. Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart, Technometrics, 34(1), 46–53. Shmueli, G. and Burkom, H. (2010). Statistical challenges facing early outbreak detection in biosurveillance, Technometrics, 52(1), 39–51. doi: 10.1198/TECH.2010.06134. URL https://doi.org/10.1198/TECH.2010.06134. 国立感染症研究所(2017). 日本の感染症サーベイランス, 2017年7月. URL https://www.niid.go.jp/niid/ja/nesid-program-summary.html. Tanoue, Y., Yoneoka, D., Kawashima, T., Uryu, S., Nomura, S., Eguchi, A., Makiyama, K. and Matsuura, K. (2023). Public transportation network scan for rapid surveillance, Biostatistics & Epidemiology, 7(1), e2069458. Frisén,  | 
    
| References_xml | – reference: Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses, The Annals of Mathematical Statistics, pages 181–187. – reference: Kulldorff, M., Huang, L. and Konty, K. (2009). A scan statistic for continuous data based on the normal probability model, International Journal of Health Geographics, 8, 1–9. – reference: Choi, K. and Thacker, S. B. (1981). An evaluation of influenza mortality surveillance, 1962–1979: I. time series forecasts of expected pneumonia and influenza deaths, American Journal of Epidemiology, 113(3), 215–226. – reference: Allévius, B. and Höhle, M. (2017). An expectation-based space-time scan statistic for zip-distributed data, arXiv preprint arXiv:1712.09188. – reference: Kulldorff, M., Huang, L., Pickle, L. and Duczmal, L. (2006). An elliptic spatial scan statistic, Statistics in Medicine, 25(22), 3929–3943. – reference: Helfenstein, U. (1986). Box-jenkins modelling of some viral infectious diseases, Statistics in Medicine, 5(1), 37–47. – reference: Page, E. S. (1954). Continuous inspection schemes, Biometrika, 41(1/2), 100–115. – reference: Yoneoka, D., Kawashima, T., Makiyama, K., Tanoue, Y., Nomura, S. and Eguchi, A. (2021). Geographically weighted generalized farrington algorithm for rapid outbreak detection over short data accumulation periods, Statistics in Medicine, 40(28), 6277–6294. – reference: Stroup, D. F. and Thacker, S. B. (1993). A bayesian approach to the detection of aberrations in public health surveillance data, Epidemiology, 4(5), 435–443. – reference: 国立感染症研究所(2017). 日本の感染症サーベイランス, 2017年7月. URL https://www.niid.go.jp/niid/ja/nesid-program-summary.html. – reference: Fricker, R. D., Jr., Hegler, B. L. and Dunfee, D. A. (2008). Comparing syndromic surveillance detection methods: Ears’versus a cusum-based methodology, Statistics in Medicine, 27(17), 3407–3429. – reference: Lucas, J. M. (1985). Counted data cusum’s, Technometrics, 27(2), 129–144. – reference: Frisén, M., Andersson, E. and Schiöler, L. (2010). Evaluation of multivariate surveillance, Journal of Applied Statistics, 37(12), 2089–2100. – reference: Radaelli, G. (1996). Detection of an unknown increase in the rate of a rare event, Journal of Applied Statistics, 23(1), 105–114. – reference: Sonesson, C. (2003). Evaluations of some exponentially weighted moving average methods, Journal of Applied Statistics, 30(10), 1115–1133. – reference: Frisén, M., Andersson, E. and Schiöler, L. (2011). Sufficient reduction in multivariate surveillance, Communications in Statistics-Theory and Methods, 40(10), 1821–1838. – reference: Patil, G. P. and Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots, Environmental and Ecological Statistics, 11, 183–197. – reference: Roberts, S. W. (2000). Control chart tests based on geometric moving averages, Technometrics, 42(1), 97–101. – reference: 高橋邦彦(2008).「疾病地図から疾病集積性へ」『保健医療科学』57(2), 86–92. – reference: Assuncao, R., Costa, M., Tavares, A. and Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters, Statistics in Medicine, 25(5), 723–742. – reference: Unkel, S., Farrington, C. P., Garthwaite, P. H., Robertson, C. and Andrews, N. (2012). Statistical methods for the prospective detection of infectious disease outbreaks: a review, Journal of the Royal Statistical Society Series A: Statistics in Society, 175(1), 49–82. – reference: Frisén, M. (2009). Optimal sequential surveillance for finance, public health, and other areas, Sequential Analysis, 28(3), 310–337. – reference: Serfling, R. E. (1963). Methods for current statistical analysis of excess pneumonia-influenza deaths, Public Health Reports, 78(6), 494. – reference: Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, 4, 1–15. – reference: Rahman, M. O., Yoneoka, D., Murano, Y., Yorifuji, T., Shoji, H., Gilmour, S., Yamamoto, Y. and Ota, E. (2023). Detecting geographical clusters of low birth weight and/or preterm birth in japan, Scientific Reports, 13(1), 1788. – reference: Sonesson, C. and Bock, D. (2003). A review and discussion of prospective statistical surveillance in public health, Journal of the Royal Statistical Society Series A: Statistics in Society, 166(1), 5–21. – reference: Frisén, M. and De Maré, J. (1991). Optimal surveillance, Biometrika, 78(2), 271–280. – reference: Salmon, M., Schumacher, D. and Höhle, M. (2016). Monitoring count time series in R: Aberration detection in public health surveillance, Journal of Statistical Software, 70(10), 1–35. doi: 10.18637/jss.v070.i10. URL https://www.jstatsoft.org/index.php/jss/article/view/v070i10. – reference: Lawson, A. B., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J.-F. and Bertollini, R. (1999). Disease mapping and risk assessment for public health. URL https://api.semanticscholar.org/CorpusID:70669438. – reference: Costagliola, D. (1994). When is the epidemic warning cut-off point exceeded?, European Journal of Epidemiology, 10, 475–476. – reference: Aue, A. and Kirch, C. (2024). The state of cumulative sum sequential changepoint testing 70 years after page, Biometrika, 111(2), 367–391. – reference: Rogerson, P. A. and Yamada, I. (2004). Monitoring change in spatial patterns of disease: comparing univariate and multivariate cumulative sum approaches, Statistics in Medicine, 23(14), 2195–2214. – reference: Kulldorff, M. (1999). Spatial scan statistics: Models, calculations, and applications, Scan Statistics and Applications, pages 303–322. – reference: Shewhart, W. A. (1930). Economic quality control of manufactured product, Bell System Technical Journal, 9(2), 364–389. doi: https://doi.org/10.1002/j.1538-7305.1930.tb00373.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1930.tb00373.x. – reference: Lawson, A. B. (2013). Statistical methods in spatial epidemiology, John Wiley & Sons. – reference: Cho, H. and Kirch, C. (2021). Data segmentation algorithms: Univariate mean change and beyond, Econometrics and Statistics. – reference: Neill, D., Moore, A. and Cooper, G. (2005). A bayesian spatial scan statistic, Advances in Neural Information Processing Systems, 18. – reference: Farrington, C. P., Andrews, N. J., Beale, A. D. and Catchpole, M. A. (1996). A statistical algorithm for the early detection of outbreaks of infectious disease, Journal of the Royal Statistical Society: Series A (Statistics in Society), 159(3), 547–563. – reference: Tango, T. (2008). A spatial scan statistic with a restricted likelihood ratio, Japanese Journal of Biometrics, 29(2), 75–95. – reference: Truong, C., Oudre, L. and Vayatis, N. (2020). Selective review of offline change point detection methods, Signal Processing, 167, 107299. – reference: Jung, I., Kulldorff, M. and Richard, O. J. (2010). A spatial scan statistic for multinomial data, Statistics in Medicine, 29(18), 1910–1918. – reference: Lee, M. and Jung, I. (2019). Modified spatial scan statistics using a restricted likelihood ratio for ordinal outcome data, Computational Statistics & Data Analysis, 133, 28–39. – reference: Kulldorff, M. (1997). A spatial scan statistic, Communications in Statistics-Theory and Methods, 26(6), 1481–1496. – reference: German, R. R. (2000). Sensitivity and predictive value positive measurements for public health surveillance systems, Epidemiology, 11(6), 720–727. ISSN 1044-3983 (Print); 1044-3983 (Linking). doi: 10.1097/00001648-200011000-00020. – reference: 国立感染症研究所(2024). 超過死亡の迅速把握2024年3月31日までの報告, 2024年3月. URL https://www.niid.go.jp/niid/ja/from-idsc/493-guidelines/12636-excess-mortality-r-240331.html. – reference: Thacker, S. B., Qualters, J. R., Lee, L. M., Centers for Disease Control, Prevention, et al. (2012). Public health surveillance in the united states: evolution and challenges, MMWR Suppl, 61(3), 3–9. – reference: Tanoue, Y., Yoneoka, D., Kawashima, T., Uryu, S., Nomura, S., Eguchi, A., Makiyama, K. and Matsuura, K. (2023). Public transportation network scan for rapid surveillance, Biostatistics & Epidemiology, 7(1), e2069458. – reference: 石岡文生,栗原考次(2012).「Echelon 解析に基づくスキャン法によるホットスポット検出について」. – reference: Anselin, L. (1995). Local indicators of spatial association—lisa, Geographical Analysis, 27(2), 93–115. – reference: Reis, B. Y. and Mandl, K. D. (2003). Time series modeling for syndromic surveillance, BMC Medical Informatics and Decision Making, 3, 1–11. – reference: Murff, H. J., Patel, V. L., Hripcsak, G. and Bates, D. W. (2003). Detecting adverse events for patient safety research: a review of current methodologies, Journal of Biomedical Informatics, 36(1–2), 131–143. – reference: Openshaw, S., Charlton, M., Wymer, C. and Craft, A. (1987). A mark 1 geographical analysis machine for the automated analysis of point data sets, International Journal of Geographical Information System, 1(4), 335–358. – reference: Moran, P. A. P. (1948). The interpretation of statistical maps, Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243–251. – reference: Levy, B. S. (1996). Toward a holistic approach to public health surveillance, American Journal of Public Health, 86(5), 624–625. – reference: Lawson, A. B. and Kleinman, K. (2005). Spatial and syndromic surveillance for public health. – reference: Wessman, P. (1998). Some principles for surveillance adopted for multivariate processes with a common change point, Communications in Statistics-Theory and Methods, 27(5), 1143–1161. – reference: Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart, Technometrics, 34(1), 46–53. – reference: Noufaily, A., Enki, D. G., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2013). An improved algorithm for outbreak detection in multiple surveillance systems, Statistics in Medicine, 32(7), 1206–1222. – reference: Reynolds, M. R. and Stoumbos, Z. G. (2000). A general approach to modeling cusum charts for a proportion, Iie Transactions, 32(6), 515–535. – reference: 国立感染症研究所(2020). 超過死亡の推定に関するQ&A, 2020年8月. URL https://www.niid.go.jp/niid/ja/from-idsc/493-guidelines/9834-excess-mortality-qa-200831.html. – reference: Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic, Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(1), 61–72. – reference: Praus, M., Schindel, F., Fescharek, R. and Schwarz, S. (1993). Alert systems for post-marketing surveillance of adverse drug reactions, Statistics in Medicine, 12(24), 2383–2393. – reference: Weatherall, J. A. C. and Haskey, J. C. (1976). Surveillance of malformations, British Medical Bulletin, 32(1), 39–44. – reference: Shmueli, G. and Burkom, H. (2010). Statistical challenges facing early outbreak detection in biosurveillance, Technometrics, 52(1), 39–51. doi: 10.1198/TECH.2010.06134. URL https://doi.org/10.1198/TECH.2010.06134. – reference: Buckeridge, D. L. (2007). Outbreak detection through automated surveillance: a review of the determinants of detection, Journal of Biomedical Informatics, 40(4), 370–379. – reference: Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference, Statistics in Medicine, 14(8), 799–810.  | 
    
| SSID | ssib005901933 ssib023160829 ssib023160828 ssib000650024 ssib023157179 ssj0033564 ssib000936966 ssib002223900 ssib000936967  | 
    
| Score | 2.432618 | 
    
| Snippet | 公衆衛生において,サーベイランスに基づく疾患の迅速な発見と対策は重要な課題の一つである.一方で,人命優先のためのスピードとトレードオフでデータの不完全性や報告... | 
    
| SourceID | jstage | 
    
| SourceType | Publisher | 
    
| StartPage | 115 | 
    
| SubjectTerms | Farrington モデル アラート サーベイランス スキャン統計 公衆衛生 感染症 監視  | 
    
| Title | 統計的公衆衛生サーベイランス | 
    
| URI | https://www.jstage.jst.go.jp/article/jjssj/55/1/55_115/_article/-char/ja | 
    
| Volume | 55 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 日本統計学会誌, 2025/09/05, Vol.55(1), pp.115-135 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: KQ8 dateStart: 19700101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2189-1478 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033564 issn: 0389-5602 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Crl0gviKd7qAV9YZYkTO7GPzjZVBQIJqZV6i_I85FAQ2l447gLiA7gAB1SJA0hcEOoBib-J0O5nMGMnuynlUFZaRY49M57x2DszSTwm5J4bVGnu5bCQ8jJ1eBlmjgyq3MkxM0iY-16mcO_w4yfBzh5_uC_2187Vva-WDsfZMH_5z30lq2gV6kCvuEv2PzS7IAoVUAb9whU0DNcz6ZjGIY0EjRiNJdWSSok1SlPJaSyoFFSPTBOjMmgLKjIwnKptGvtUekgBCz6NRm1BqbZJ87ZGqw7G77BU36-lcUBVSLUwhZHp9zRvwM8W1cAJx76AT2wCbhdPahEkAu62TAF6CwYtFlZZQXrAIZJHjgAYmGUWmFMdIjB2wfvAIHTkms6BHT1AVlFGt8PS_UcgnjDfeInFpO0QXaQN0lgRAS-KkQCMq_aRJPCjhAHW8BusNjK9_2fw9RxwGK0xKU0dOEzKYdyeStQZGJuH-MRCstaC2Z2srePBbN6W0zbN9zAnbF2DezEUYrjAOpEmvJ2EiQFLhEiYuTCRdC24jS-pIZY474EFxGNOHj09mUrR7WXud81Jj8Ff9_3Q3_NVL7Uj7mFWy9ABwgYRsuUbYLgP3N4b2vZedV6T74s21Vs7qF0-XBD-QV908BRriJu6by6NG7h7kVxo47dNbaW9RNbq9DLZwJDNZjy_Qu7Pjr_Pv7ydfXj1-_W3-dGb-dHH2btPzeS4mf5qpu-byedm-rWZ_mgmP6-Sve14d7TjtCeSODXIkjqsTFNeFbxSEInn-ChEurkSokhLmaUQbPECTCQvuCjySuUFd6tKiMxnKVOFV7n-NbJ-8OygvE42lQz8QopKuUASjG4KXmNYBUpKkbEqZDeItHImz23ameTMGr65OuotsrFcYLfJ-vjFYXkHvO5xdtdMlz-YmqVa | 
    
| linkProvider | Colorado Alliance of Research Libraries | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%B5%B1%E8%A8%88%E7%9A%84%E5%85%AC%E8%A1%86%E8%A1%9B%E7%94%9F%E3%82%B5%E3%83%BC%E3%83%99%E3%82%A4%E3%83%A9%E3%83%B3%E3%82%B9&rft.jtitle=%E6%97%A5%E6%9C%AC%E7%B5%B1%E8%A8%88%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E5%B7%9D%E5%B3%B6+%E5%AD%9D%E8%A1%8C&rft.au=%E7%B1%B3%E5%B2%A1+%E5%A4%A7%E8%BC%94&rft.au=%E7%94%B0%E4%B8%8A+%E6%82%A0%E5%A4%AA&rft.date=2025-09-05&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E7%B5%B1%E8%A8%88%E5%AD%A6%E4%BC%9A&rft.issn=0389-5602&rft.eissn=2189-1478&rft.volume=55&rft.issue=1&rft.spage=115&rft.epage=135&rft_id=info:doi/10.11329%2Fjjssj.55.115&rft.externalDocID=article_jjssj_55_1_55_115_article_char_ja | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-5602&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-5602&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-5602&client=summon |