Mechanism of Pd(OAc)2/Pyridine Catalyst Reoxidation by O2: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O2 Activation

Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direc...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 15; no. 12; pp. 2915 - 2922
Main Authors Popp, Brian V., Stahl, Shannon S.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag 2009
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.200802311

Cover

Abstract Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme). The mechanism of catalyst oxidation by O2 in Pd‐catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of PdII–hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)2/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a PdII–hydroperoxide species from the reaction of O2 from the corresponding PdII–hydride [(py)nPdII(H)OAc]: 1) a homolytic pathway involving hydrogen‐atom ion by O2; 2) AcOH reductive elimination to yield a Pd0 species that subsequently reacts with O2; 3) migratory insertion of O2 into a PdH bond; and 4) oxidative addition of O2 to PdII to yield a PdIV(η2‐peroxo) species. In contrast to previous studies of reactions between O2 and Pd–hydride species, the reductive‐elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis‐coordination sites. These results strongly support the involvement of Pd0 as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O2 with the Pd0 intermediate revealed a novel, previously unrecognized mechanism that yields a Pd–OOH product without proceeding through the intermediacy of a PdII(η2‐peroxo) species. This mechanism resembles pathways commonly observed in biological O2 activation and suggests that noble‐metal and biological oxidation mechanisms may be more similar than previously appreciated. Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme).
AbstractList The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated.The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated.
Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme). The mechanism of catalyst oxidation by O2 in Pd‐catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of PdII–hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)2/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a PdII–hydroperoxide species from the reaction of O2 from the corresponding PdII–hydride [(py)nPdII(H)OAc]: 1) a homolytic pathway involving hydrogen‐atom ion by O2; 2) AcOH reductive elimination to yield a Pd0 species that subsequently reacts with O2; 3) migratory insertion of O2 into a PdH bond; and 4) oxidative addition of O2 to PdII to yield a PdIV(η2‐peroxo) species. In contrast to previous studies of reactions between O2 and Pd–hydride species, the reductive‐elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis‐coordination sites. These results strongly support the involvement of Pd0 as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O2 with the Pd0 intermediate revealed a novel, previously unrecognized mechanism that yields a Pd–OOH product without proceeding through the intermediacy of a PdII(η2‐peroxo) species. This mechanism resembles pathways commonly observed in biological O2 activation and suggests that noble‐metal and biological oxidation mechanisms may be more similar than previously appreciated. Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme).
The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated.
Author Stahl, Shannon S.
Popp, Brian V.
Author_xml – sequence: 1
  givenname: Brian V.
  surname: Popp
  fullname: Popp, Brian V.
  email: bpopp@chem.wisc.edu
– sequence: 2
  givenname: Shannon S.
  surname: Stahl
  fullname: Stahl, Shannon S.
  email: stahl@chem.wisc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19191243$$D View this record in MEDLINE/PubMed
BookMark eNpFkU1P3DAQhq0KVBbotcfKp6ocsownH0562674WGlXixA9R44zKUaJTeNsS34O_xQvC6ws2_LMM69H8x6zA-ssMfZVwFQA4Lm-p26KADlgLMQnNhEpiiiWWXrAJlAkMsrSuDhix94_AECRxfFndiSKsDCJJ-x5RfpeWeM77hp-U_9Yz_QZnt-MvamNJT5Xg2pHP_Bbck-mVoNxllcjX-NPvrBNuyGraVu6VJVpia-cdTXZQQ3El-aPsrXn4eCLbdA0Ru8UQoHiv4zrTEeD0XzfReP6IM5nejD_XtlTdtio1tOXt_uE_b68uJtfR8v11WI-W0YPQoKIJKZ5pXOERlUS81ommMgiL-osbKwSUqoQOaQoCaoUMYXAhyAmoKTALD5h33e6j737uyE_lJ3xmtpWWXIbX2bhF5EhBPDbG7ipOqrLx950qh_L96EGoNgB_8NExn0eyq1l5day8sOycn59sfp4xS_BTYuL
ContentType Journal Article
Copyright Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/chem.200802311
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 2922
ExternalDocumentID 19191243
CHEM200802311
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: CHE‐0543585; CHE‐0091916
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
.GJ
186
6TJ
9M8
AAHHS
ABDBF
ABEML
ACCFJ
ACSCC
ACUHS
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AGCDD
AI.
AIWBW
AJBDE
BZBRT
CGR
CUY
CVF
EBD
ECM
EIF
H~9
MVM
NPM
PALCI
RGC
RIWAO
RJQFR
RWI
SAMSI
VH1
VXZ
WRC
WSR
Y6R
ZGI
7X8
ID FETCH-LOGICAL-j1701-7258bc820fab728d74247989d689d2b4eaa9180527e0b5225058beaa240a71263
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 12:29:58 EDT 2025
Wed Feb 19 01:44:17 EST 2025
Tue Sep 09 05:10:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j1701-7258bc820fab728d74247989d689d2b4eaa9180527e0b5225058beaa240a71263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19191243
PQID 67011620
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_67011620
pubmed_primary_19191243
wiley_primary_10_1002_chem_200802311_CHEM200802311
PublicationCentury 2000
PublicationDate 2009-00-00
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009-00-00
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2009
Publisher WILEY‐VCH Verlag
Publisher_xml – name: WILEY‐VCH Verlag
References 2004; 126
2002 2002; 114 41
2006; 39
1988; 37
2008; 4
2006 2006; 118 45
2005; 24
2004; 33
1997; 106
1997; 107
2000
1993; 33
2006; 25
2005; 105
1997; 101
1996; 61
2006; 361
1986
1982; 296
1999; 99
1994; 35
2005; 309
2008; 113
1971; 174
2007; 22
1981; 74
2006; 128
1998; 99
1990; 94
2004 2004; 116 43
2001; 123
2007; 443
2007; 129
1973; 73
1990; 77
2004; 104
1996; 17
2003; 238–239
2002; 35
2008
1996; 96
2007
1994
1999; 64
2005
2004
2006; 1
2002
1999; 464
2008; 53
1985; 83
2007; 11
1976; 9
1996; 53
2006 2008; 102 112
1993; 58
1963; 140
2003 2003; 115 42
2006; 45
2005; 9
1993; 98
2005; 127
1989; 90
2008; 456
2007; 40
2007 2007; 119 46
2008; 130
References_xml – volume: 90
  start-page: 2154
  year: 1989
  end-page: 2161
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 13178
  year: 2004
  end-page: 13179
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 123
  year: 1990
  end-page: 141
  publication-title: Theor. Chim. Acta
– volume: 443
  start-page: 183
  year: 2007
  end-page: 189
  publication-title: Chem. Phys. Lett.
– start-page: 357
  year: 1994
  end-page: 359
  publication-title: J. Chem. Soc. Chem. Commun.
– year: 2005
– volume: 53
  start-page: 1056
  year: 2008
  end-page: 1065
  publication-title: J. Chem. Eng. Data
– volume: 116 43
  start-page: 3480 3400
  year: 2004 2004
  end-page: 3501 3420
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 129
  start-page: 10361
  year: 2007
  end-page: 10369
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 4348
  year: 2006
  end-page: 4355
  publication-title: J. Am. Chem. Soc.
– start-page: 201
  year: 2004
  end-page: 216
  publication-title: Synlett
– volume: 106
  start-page: 5151
  year: 1997
  end-page: 5158
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 3032
  year: 1997
  end-page: 3041
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 11268
  year: 2004
  end-page: 11278
  publication-title: J. Am. Chem. Soc.
– start-page: 225
  year: 2008
  end-page: 249
– volume: 25
  start-page: 2066
  year: 2006
  end-page: 2073
  publication-title: Organometallics
– volume: 33
  start-page: 449
  year: 1993
  end-page: 454
  publication-title: Isr. J. Chem.
– volume: 1
  start-page: 508
  year: 2006
  end-page: 515
  publication-title: Chem. Asian J.
– volume: 127
  start-page: 17778
  year: 2005
  end-page: 17788
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 362
  year: 2004
  end-page: 367
  publication-title: Chem. Lett.
– volume: 119 46
  start-page: 607 601
  year: 2007 2007
  end-page: 610 604
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 118 45
  start-page: 2970 2904
  year: 2006 2006
  end-page: 2973 2907
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 113
  start-page: 29
  year: 2008
  end-page: 67
  publication-title: J. Res. Natl. Inst. Stand. Technol.
– volume: 118 45
  start-page: 6764 6612
  year: 2006 2006
  end-page: 6767 6615
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 1986
– volume: 126
  start-page: 16302
  year: 2004
  end-page: 16303
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 6750
  year: 1999
  end-page: 6755
  publication-title: J. Org. Chem.
– volume: 58
  start-page: 5298
  year: 1993
  end-page: 5300
  publication-title: J. Org. Chem.
– volume: 83
  start-page: 735
  year: 1985
  end-page: 746
  publication-title: J. Chem. Phys.
– volume: 238–239
  start-page: 187
  year: 2003
  end-page: 209
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 175
  year: 1976
  end-page: 185
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 49
  year: 1996
  end-page: 56
  publication-title: J. Comput. Chem.
– volume: 128
  start-page: 12785
  year: 2006
  end-page: 12793
  publication-title: J. Am. Chem. Soc.
– volume: 464
  start-page: 211
  year: 1999
  end-page: 226
  publication-title: J. Mol. Struct.
– volume: 101
  start-page: 10506
  year: 1997
  end-page: 10517
  publication-title: J. Phys. Chem. B
– volume: 40
  start-page: 543
  year: 2007
  end-page: 553
  publication-title: Acc. Chem. Res.
– volume: 98
  start-page: 1372
  year: 1993
  end-page: 1377
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 7188
  year: 2001
  end-page: 7189
  publication-title: J. Am. Chem. Soc.
– volume: 73
  start-page: 235
  year: 1973
  end-page: 245
  publication-title: Chem. Rev.
– volume: 296
  start-page: 683
  year: 1982
  end-page: 684
  publication-title: Nature
– volume: 39
  start-page: 221
  year: 2006
  end-page: 229
  publication-title: Acc. Chem. Res.
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  publication-title: Phys. Rev. B
– volume: 105
  start-page: 2999
  year: 2005
  end-page: 3093
  publication-title: Chem. Rev.
– volume: 24
  start-page: 6019
  year: 2005
  end-page: 6028
  publication-title: Organometallics
– volume: 61
  start-page: 3584
  year: 1996
  end-page: 3585
  publication-title: J. Org. Chem.
– volume: 4
  start-page: 1283
  year: 2008
  end-page: 1292
  publication-title: J. Chem. Theory Comput.
– volume: 127
  start-page: 13172
  year: 2005
  end-page: 13179
  publication-title: J. Am. Chem. Soc.
– volume: 94
  start-page: 5523
  year: 1990
  end-page: 5527
  publication-title: J. Phys. Chem.
– volume: 9
  start-page: 152
  year: 2005
  end-page: 163
  publication-title: Curr. Opin. Chem. Biol.
– volume: 99
  start-page: 95
  year: 1998
  end-page: 99
  publication-title: Theor. Chem. Acc.
– year: 2007
– volume: 104
  start-page: 561
  year: 2004
  end-page: 588
  publication-title: Chem. Rev.
– volume: 11
  start-page: 151
  year: 2007
  end-page: 158
  publication-title: Curr. Opin. Chem. Biol.
– volume: 22
  start-page: 149
  year: 2007
  end-page: 189
  publication-title: Top. Organomet. Chem.
– volume: 174
  start-page: 587
  year: 1971
  end-page: 589
  publication-title: Science
– year: 2000
– volume: 309
  start-page: 1824
  year: 2005
  end-page: 1826
  publication-title: Science
– volume: 129
  start-page: 4410
  year: 2007
  end-page: 4422
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 3946
  year: 1996
  end-page: 3952
  publication-title: Phys. Rev. A
– volume: 128
  start-page: 2508
  year: 2006
  end-page: 2509
  publication-title: J. Am. Chem. Soc.
– start-page: 341
  year: 2002
  end-page: 342
– volume: 361
  start-page: 1351
  year: 2006
  end-page: 1364
  publication-title: Philos. Trans. R. Soc. London Ser. B
– volume: 102 112
  start-page: 203 3754
  year: 2006 2008
  end-page: 226 3767
  publication-title: Ann. Rep. Sec. C J. Phys. Chem. A
– volume: 24
  start-page: 2398
  year: 2005
  end-page: 2410
  publication-title: Organometallics
– volume: 115 42
  start-page: 2998 2892
  year: 2003 2003
  end-page: 3001 2895
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 96
  start-page: 2541
  year: 1996
  end-page: 2561
  publication-title: Chem. Rev.
– volume: 126
  start-page: 10212
  year: 2004
  end-page: 10213
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 809
  year: 1963
  end-page: 810
  publication-title: Science
– volume: 99
  start-page: 2161
  year: 1999
  end-page: 2200
  publication-title: Chem. Rev.
– volume: 114 41
  start-page: 172 164
  year: 2002 2002
  end-page: 174 166
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 127
  start-page: 11102
  year: 2005
  end-page: 11114
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 8499
  year: 2005
  end-page: 8507
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 9631
  year: 2006
  end-page: 9633
  publication-title: Inorg. Chem.
– volume: 35
  start-page: 774
  year: 2002
  end-page: 781
  publication-title: Acc. Chem. Res.
– start-page: 1211
  year: 2002
  end-page: 1222
  publication-title: Synlett
– volume: 74
  start-page: 5737
  year: 1981
  end-page: 5743
  publication-title: J. Chem. Phys.
– volume: 456
  start-page: 41
  year: 2008
  end-page: 46
  publication-title: Chem. Phys. Lett.
– volume: 128
  start-page: 9651
  year: 2006
  end-page: 9660
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 885
  year: 2005
  end-page: 893
  publication-title: Organometallics
– volume: 35
  start-page: 9281
  year: 1994
  end-page: 9284
  publication-title: Tetrahedron Lett.
– volume: 96
  start-page: 2011
  year: 1996
  end-page: 2033
  publication-title: Chem. Rev.
– volume: 130
  start-page: 5753
  year: 2008
  end-page: 5762
  publication-title: J. Am. Chem. Soc.
SSID ssj0009633
Score 1.8975574
Snippet Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The...
The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2915
SubjectTerms Catalysis
density functional calculations
dioxygen ligands
homogeneous catalysis
Ligands
Molecular Structure
oxidation
Oxidation-Reduction
Oxygen - chemistry
palladium
Palladium - chemistry
Pyridines - chemistry
Title Mechanism of Pd(OAc)2/Pyridine Catalyst Reoxidation by O2: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O2 Activation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200802311
https://www.ncbi.nlm.nih.gov/pubmed/19191243
https://www.proquest.com/docview/67011620
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0947-6539
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELZQX-BljMFGNxh-4AEe0jaOEye8ddUqQBQQolLfIju5TNnUZqKttPJv9k93ZzctIJ7GQyIl0UV27mx_d859x9ixUCrWPhQeLe6e1EHiJSAiD9eCrAO6EDKm3OHBdXQ-lJejcPQki9_xQ6wCbjQy7HxNA1ybaXtNGop9spnklsGM_B8_iKxPdbfmj0LrcrXkpfKIg7VmbeyI9nPx1_Dlc7hq15v-NtN1S91vJr9a85lpZY8vSBzf0pX37N0SjPKus54dtgGTD2yzV9eA22V_B0CZweV0zKuC3-YnN93sVLRvFw8lrnnAexT8WUxn_A6qP6Urz8TNgt-IM35Rlz8h0Ssi8gWOM0iV22wn4FflD0oz5njiLl24WMYPSUDzb2U1LseUY8nXrUCIjS_n3ayuyrbHhv3v971zb1nUwftJ1O-eEmFsMsQdhTZKxDm65lIlcZJHeAgjQevEpzoLCjoG7QcRWmzwJiIPrXwRBR9ZY1JNYJ_xEA0qDiDIIDaSeMuyrAgNJHkRCB-kbLKjWqkpfjfaCdETqObTNFK0_yQ6TfbJ6Tr97bg9UnRfE4Q8QZMJq7H1A0vvLFLSVbrSVUrEFaurz_8j9IVtuR0qCuscsMbsYQ6HCHRm5qs15n-i3vSN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHODC-zGeOXCAQ9mWZk3LbUygARsgBBK3KmldVNBWtIfE-Df8U-xm3QTiBIdWaitXSe00n534M2OHQilfVyFxaHJ3pHYDJwDhOTgXRBXQiZA-5Q63b7zmo7x6qhW7CSkXxvJDTAJuNDLy_zUNcApIl6esodipPJU8pzBDB2hOeuisEC66nzJIoX3ZavJSOcTCWvA2VkT5u_xvCPM7YM1nnIslZoq22o0mryfDgTmJPn7QOP6rM8tscYxHed0a0Aqbge4qm28UZeDW2GcbKDk47Xd4lvC7-Oi2Hh2L8t2ol-K0B7xB8Z9Rf8DvIXtPbYUmbkb8Vpzyy6ICCom2iMsXOP5EsjhPeALeSp8p05jjiduM4WQcQiQBzc_SrJN2KM2ST1uBKBtfzutRUZhtnT1enD80ms64roPzQuzvjhI130QIPRJtlPBj9M6lCvwg9vAQRoLWQZVKLSioGDQhBGm-wZsIPrSqCs_dYLPdrAtbjNfQpnwX3Ah8I4m6LIqSmoEgTlxRBSlL7KDQaojfjRZDdBeyYT_0FC1BiUqJbVplh2-W3iNEDzZA1OOWmMhVNn2QMzyLkHQVTnQVEnfF5Gr7L0IHbL750G6Frcub6x22YBesKMqzy2YHvSHsIe4ZmP3csr8ABhr4rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hkGgv5dGWprz20EM5mCTrtXfNLQQiHgEiVKTerF17XLlV4ogkEuHf8E-Z8caJQD3BwZZsa6xdz6zn29mdbxj7IZTSpgmZR87dk8aPvAhE6KEvSBpgMiE15Q5fXYdnd_Lid1DtJqRcGMcPMQ-40cgo_9c0wGGYZvUFayh2qkwlLynMcAK0IoNI066-k9sFgxTal6smL5VHLKwVb2ND1F_K_w9hvgSspcfprDFbtdVtNPl3OBnbw-TxFY3juzqzzj7N8ChvOQPaYEsw2GQf2lUZuM_s6QooOTgf9XmR8V7686aVHIh6b3qfo9sD3qb4z3Q05rdQPOSuQhO3U34jjvh5VQGFRLvE5QscfyJFWiY8Ae_mfyjTmOOJu4zhbBZCJAHDj_Oin_cpzZIvWoEoG1_OW0lVmO0Lu-uc_mqfebO6Dt5fYn_3lAi0TRB6ZMYqoVOcnUsV6SgN8RBWgjFRk0otKGhYNCEEadriTQQfRjVF6H9ly4NiAN8YD9CmtA9-AtpKoi5LkiywEKWZL5ogZY3tV1qN8bvRYogZQDEZxaGiJSjRqLEtp-x46Og9YpzBRoh6_BoTpcoWD0qGZxGTruK5rmLirphffX-L0D5b7Z104u759eU2--jWqyjIs8OWx_cT2EXYM7Z7pWE_A7Z9-DI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Pd%28OAc%292%2Fpyridine+catalyst+reoxidation+by+O2%3A+influence+of+labile+monodentate+ligands+and+identification+of+a+biomimetic+mechanism+for+O2+activation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Popp%2C+Brian+V&rft.au=Stahl%2C+Shannon+S&rft.date=2009&rft.eissn=1521-3765&rft.volume=15&rft.issue=12&rft.spage=2915&rft_id=info:doi/10.1002%2Fchem.200802311&rft_id=info%3Apmid%2F19191243&rft.externalDocID=19191243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon