Mechanism of Pd(OAc)2/Pyridine Catalyst Reoxidation by O2: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O2 Activation
Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direc...
        Saved in:
      
    
          | Published in | Chemistry : a European journal Vol. 15; no. 12; pp. 2915 - 2922 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Weinheim
          WILEY‐VCH Verlag
    
        2009
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0947-6539 1521-3765 1521-3765  | 
| DOI | 10.1002/chem.200802311 | 
Cover
| Abstract | Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme).
The mechanism of catalyst oxidation by O2 in Pd‐catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of PdII–hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)2/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a PdII–hydroperoxide species from the reaction of O2 from the corresponding PdII–hydride [(py)nPdII(H)OAc]: 1) a homolytic pathway involving hydrogen‐atom ion by O2; 2) AcOH reductive elimination to yield a Pd0 species that subsequently reacts with O2; 3) migratory insertion of O2 into a PdH bond; and 4) oxidative addition of O2 to PdII to yield a PdIV(η2‐peroxo) species. In contrast to previous studies of reactions between O2 and Pd–hydride species, the reductive‐elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis‐coordination sites. These results strongly support the involvement of Pd0 as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O2 with the Pd0 intermediate revealed a novel, previously unrecognized mechanism that yields a Pd–OOH product without proceeding through the intermediacy of a PdII(η2‐peroxo) species. This mechanism resembles pathways commonly observed in biological O2 activation and suggests that noble‐metal and biological oxidation mechanisms may be more similar than previously appreciated.
Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme). | 
    
|---|---|
| AbstractList | The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated.The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated. Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme). The mechanism of catalyst oxidation by O2 in Pd‐catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of PdII–hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)2/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a PdII–hydroperoxide species from the reaction of O2 from the corresponding PdII–hydride [(py)nPdII(H)OAc]: 1) a homolytic pathway involving hydrogen‐atom ion by O2; 2) AcOH reductive elimination to yield a Pd0 species that subsequently reacts with O2; 3) migratory insertion of O2 into a PdH bond; and 4) oxidative addition of O2 to PdII to yield a PdIV(η2‐peroxo) species. In contrast to previous studies of reactions between O2 and Pd–hydride species, the reductive‐elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis‐coordination sites. These results strongly support the involvement of Pd0 as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O2 with the Pd0 intermediate revealed a novel, previously unrecognized mechanism that yields a Pd–OOH product without proceeding through the intermediacy of a PdII(η2‐peroxo) species. This mechanism resembles pathways commonly observed in biological O2 activation and suggests that noble‐metal and biological oxidation mechanisms may be more similar than previously appreciated. Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The results reveal that labile monodentate ligands, such as pyridine, favor a catalyst reoxidation pathway that proceeds via Pd0, rather than direct reaction of O2 with a PdII–hydride intermediate (see scheme). The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect to the reactivity of Pd(II)-hydride species. Here, we describe the use of unrestricted DFT computational methods to investigate the mechanism of catalyst reoxidation with the Pd(OAc)(2)/pyridine catalyst system, one of the most widely used catalysts. These studies probe four different pathways for the formation of a Pd(II)-hydroperoxide species from the reaction of O(2) from the corresponding Pd(II)-hydride [(py)(n)Pd(II)(H)OAc]: 1) a homolytic pathway involving hydrogen-atom abstraction by O(2); 2) AcOH reductive elimination to yield a Pd(0) species that subsequently reacts with O(2); 3) migratory insertion of O(2) into a Pd-H bond; and 4) oxidative addition of O(2) to Pd(II) to yield a Pd(IV)(eta(2)-peroxo) species. In contrast to previous studies of reactions between O(2) and Pd-hydride species, the reductive-elimination pathway (mechanism 2) is significantly more favorable than any of the other pathways. This outcome is traced to the presence of labile ligands (pyridine) that can readily dissociate from Pd to enable the hydride and acetate ligands to occupy cis-coordination sites. These results strongly support the involvement of Pd(0) as an intermediate in the catalytic cycle. Investigations of the mechanism of the reaction of O(2) with the Pd(0) intermediate revealed a novel, previously unrecognized mechanism that yields a Pd-OOH product without proceeding through the intermediacy of a Pd(II)(eta(2)-peroxo) species. This mechanism resembles pathways commonly observed in biological O(2) activation and suggests that noble-metal and biological oxidation mechanisms may be more similar than previously appreciated.  | 
    
| Author | Stahl, Shannon S. Popp, Brian V.  | 
    
| Author_xml | – sequence: 1 givenname: Brian V. surname: Popp fullname: Popp, Brian V. email: bpopp@chem.wisc.edu – sequence: 2 givenname: Shannon S. surname: Stahl fullname: Stahl, Shannon S. email: stahl@chem.wisc.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19191243$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNpFkU1P3DAQhq0KVBbotcfKp6ocsownH0562674WGlXixA9R44zKUaJTeNsS34O_xQvC6ws2_LMM69H8x6zA-ssMfZVwFQA4Lm-p26KADlgLMQnNhEpiiiWWXrAJlAkMsrSuDhix94_AECRxfFndiSKsDCJJ-x5RfpeWeM77hp-U_9Yz_QZnt-MvamNJT5Xg2pHP_Bbck-mVoNxllcjX-NPvrBNuyGraVu6VJVpia-cdTXZQQ3El-aPsrXn4eCLbdA0Ru8UQoHiv4zrTEeD0XzfReP6IM5nejD_XtlTdtio1tOXt_uE_b68uJtfR8v11WI-W0YPQoKIJKZ5pXOERlUS81ommMgiL-osbKwSUqoQOaQoCaoUMYXAhyAmoKTALD5h33e6j737uyE_lJ3xmtpWWXIbX2bhF5EhBPDbG7ipOqrLx950qh_L96EGoNgB_8NExn0eyq1l5day8sOycn59sfp4xS_BTYuL | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | 
    
| Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | 
    
| DBID | CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1002/chem.200802311 | 
    
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1521-3765 | 
    
| EndPage | 2922 | 
    
| ExternalDocumentID | 19191243 CHEM200802311  | 
    
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: NSF funderid: CHE‐0543585; CHE‐0091916  | 
    
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT UQL V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT .GJ 186 6TJ 9M8 AAHHS ABDBF ABEML ACCFJ ACSCC ACUHS ADZOD AEEZP AEQDE AEUQT AFPWT AGCDD AI. AIWBW AJBDE BZBRT CGR CUY CVF EBD ECM EIF H~9 MVM NPM PALCI RGC RIWAO RJQFR RWI SAMSI VH1 VXZ WRC WSR Y6R ZGI 7X8  | 
    
| ID | FETCH-LOGICAL-j1701-7258bc820fab728d74247989d689d2b4eaa9180527e0b5225058beaa240a71263 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0947-6539 1521-3765  | 
    
| IngestDate | Fri Jul 11 12:29:58 EDT 2025 Wed Feb 19 01:44:17 EST 2025 Tue Sep 09 05:10:34 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-j1701-7258bc820fab728d74247989d689d2b4eaa9180527e0b5225058beaa240a71263 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 19191243 | 
    
| PQID | 67011620 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_miscellaneous_67011620 pubmed_primary_19191243 wiley_primary_10_1002_chem_200802311_CHEM200802311  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-00-00 | 
    
| PublicationDateYYYYMMDD | 2009-01-01 | 
    
| PublicationDate_xml | – year: 2009 text: 2009-00-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Weinheim | 
    
| PublicationPlace_xml | – name: Weinheim – name: Germany  | 
    
| PublicationTitle | Chemistry : a European journal | 
    
| PublicationTitleAlternate | Chemistry | 
    
| PublicationYear | 2009 | 
    
| Publisher | WILEY‐VCH Verlag | 
    
| Publisher_xml | – name: WILEY‐VCH Verlag | 
    
| References | 2004; 126 2002 2002; 114 41 2006; 39 1988; 37 2008; 4 2006 2006; 118 45 2005; 24 2004; 33 1997; 106 1997; 107 2000 1993; 33 2006; 25 2005; 105 1997; 101 1996; 61 2006; 361 1986 1982; 296 1999; 99 1994; 35 2005; 309 2008; 113 1971; 174 2007; 22 1981; 74 2006; 128 1998; 99 1990; 94 2004 2004; 116 43 2001; 123 2007; 443 2007; 129 1973; 73 1990; 77 2004; 104 1996; 17 2003; 238–239 2002; 35 2008 1996; 96 2007 1994 1999; 64 2005 2004 2006; 1 2002 1999; 464 2008; 53 1985; 83 2007; 11 1976; 9 1996; 53 2006 2008; 102 112 1993; 58 1963; 140 2003 2003; 115 42 2006; 45 2005; 9 1993; 98 2005; 127 1989; 90 2008; 456 2007; 40 2007 2007; 119 46 2008; 130  | 
    
| References_xml | – volume: 90 start-page: 2154 year: 1989 end-page: 2161 publication-title: J. Chem. Phys. – volume: 126 start-page: 13178 year: 2004 end-page: 13179 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 123 year: 1990 end-page: 141 publication-title: Theor. Chim. Acta – volume: 443 start-page: 183 year: 2007 end-page: 189 publication-title: Chem. Phys. Lett. – start-page: 357 year: 1994 end-page: 359 publication-title: J. Chem. Soc. Chem. Commun. – year: 2005 – volume: 53 start-page: 1056 year: 2008 end-page: 1065 publication-title: J. Chem. Eng. Data – volume: 116 43 start-page: 3480 3400 year: 2004 2004 end-page: 3501 3420 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 129 start-page: 10361 year: 2007 end-page: 10369 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 4348 year: 2006 end-page: 4355 publication-title: J. Am. Chem. Soc. – start-page: 201 year: 2004 end-page: 216 publication-title: Synlett – volume: 106 start-page: 5151 year: 1997 end-page: 5158 publication-title: J. Chem. Phys. – volume: 107 start-page: 3032 year: 1997 end-page: 3041 publication-title: J. Chem. Phys. – volume: 126 start-page: 11268 year: 2004 end-page: 11278 publication-title: J. Am. Chem. Soc. – start-page: 225 year: 2008 end-page: 249 – volume: 25 start-page: 2066 year: 2006 end-page: 2073 publication-title: Organometallics – volume: 33 start-page: 449 year: 1993 end-page: 454 publication-title: Isr. J. Chem. – volume: 1 start-page: 508 year: 2006 end-page: 515 publication-title: Chem. Asian J. – volume: 127 start-page: 17778 year: 2005 end-page: 17788 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 362 year: 2004 end-page: 367 publication-title: Chem. Lett. – volume: 119 46 start-page: 607 601 year: 2007 2007 end-page: 610 604 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 118 45 start-page: 2970 2904 year: 2006 2006 end-page: 2973 2907 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 113 start-page: 29 year: 2008 end-page: 67 publication-title: J. Res. Natl. Inst. Stand. Technol. – volume: 118 45 start-page: 6764 6612 year: 2006 2006 end-page: 6767 6615 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 1986 – volume: 126 start-page: 16302 year: 2004 end-page: 16303 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 6750 year: 1999 end-page: 6755 publication-title: J. Org. Chem. – volume: 58 start-page: 5298 year: 1993 end-page: 5300 publication-title: J. Org. Chem. – volume: 83 start-page: 735 year: 1985 end-page: 746 publication-title: J. Chem. Phys. – volume: 238–239 start-page: 187 year: 2003 end-page: 209 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 175 year: 1976 end-page: 185 publication-title: Acc. Chem. Res. – volume: 17 start-page: 49 year: 1996 end-page: 56 publication-title: J. Comput. Chem. – volume: 128 start-page: 12785 year: 2006 end-page: 12793 publication-title: J. Am. Chem. Soc. – volume: 464 start-page: 211 year: 1999 end-page: 226 publication-title: J. Mol. Struct. – volume: 101 start-page: 10506 year: 1997 end-page: 10517 publication-title: J. Phys. Chem. B – volume: 40 start-page: 543 year: 2007 end-page: 553 publication-title: Acc. Chem. Res. – volume: 98 start-page: 1372 year: 1993 end-page: 1377 publication-title: J. Chem. Phys. – volume: 123 start-page: 7188 year: 2001 end-page: 7189 publication-title: J. Am. Chem. Soc. – volume: 73 start-page: 235 year: 1973 end-page: 245 publication-title: Chem. Rev. – volume: 296 start-page: 683 year: 1982 end-page: 684 publication-title: Nature – volume: 39 start-page: 221 year: 2006 end-page: 229 publication-title: Acc. Chem. Res. – volume: 37 start-page: 785 year: 1988 end-page: 789 publication-title: Phys. Rev. B – volume: 105 start-page: 2999 year: 2005 end-page: 3093 publication-title: Chem. Rev. – volume: 24 start-page: 6019 year: 2005 end-page: 6028 publication-title: Organometallics – volume: 61 start-page: 3584 year: 1996 end-page: 3585 publication-title: J. Org. Chem. – volume: 4 start-page: 1283 year: 2008 end-page: 1292 publication-title: J. Chem. Theory Comput. – volume: 127 start-page: 13172 year: 2005 end-page: 13179 publication-title: J. Am. Chem. Soc. – volume: 94 start-page: 5523 year: 1990 end-page: 5527 publication-title: J. Phys. Chem. – volume: 9 start-page: 152 year: 2005 end-page: 163 publication-title: Curr. Opin. Chem. Biol. – volume: 99 start-page: 95 year: 1998 end-page: 99 publication-title: Theor. Chem. Acc. – year: 2007 – volume: 104 start-page: 561 year: 2004 end-page: 588 publication-title: Chem. Rev. – volume: 11 start-page: 151 year: 2007 end-page: 158 publication-title: Curr. Opin. Chem. Biol. – volume: 22 start-page: 149 year: 2007 end-page: 189 publication-title: Top. Organomet. Chem. – volume: 174 start-page: 587 year: 1971 end-page: 589 publication-title: Science – year: 2000 – volume: 309 start-page: 1824 year: 2005 end-page: 1826 publication-title: Science – volume: 129 start-page: 4410 year: 2007 end-page: 4422 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 3946 year: 1996 end-page: 3952 publication-title: Phys. Rev. A – volume: 128 start-page: 2508 year: 2006 end-page: 2509 publication-title: J. Am. Chem. Soc. – start-page: 341 year: 2002 end-page: 342 – volume: 361 start-page: 1351 year: 2006 end-page: 1364 publication-title: Philos. Trans. R. Soc. London Ser. B – volume: 102 112 start-page: 203 3754 year: 2006 2008 end-page: 226 3767 publication-title: Ann. Rep. Sec. C J. Phys. Chem. A – volume: 24 start-page: 2398 year: 2005 end-page: 2410 publication-title: Organometallics – volume: 115 42 start-page: 2998 2892 year: 2003 2003 end-page: 3001 2895 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 96 start-page: 2541 year: 1996 end-page: 2561 publication-title: Chem. Rev. – volume: 126 start-page: 10212 year: 2004 end-page: 10213 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 809 year: 1963 end-page: 810 publication-title: Science – volume: 99 start-page: 2161 year: 1999 end-page: 2200 publication-title: Chem. Rev. – volume: 114 41 start-page: 172 164 year: 2002 2002 end-page: 174 166 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 127 start-page: 11102 year: 2005 end-page: 11114 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 8499 year: 2005 end-page: 8507 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 9631 year: 2006 end-page: 9633 publication-title: Inorg. Chem. – volume: 35 start-page: 774 year: 2002 end-page: 781 publication-title: Acc. Chem. Res. – start-page: 1211 year: 2002 end-page: 1222 publication-title: Synlett – volume: 74 start-page: 5737 year: 1981 end-page: 5743 publication-title: J. Chem. Phys. – volume: 456 start-page: 41 year: 2008 end-page: 46 publication-title: Chem. Phys. Lett. – volume: 128 start-page: 9651 year: 2006 end-page: 9660 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 885 year: 2005 end-page: 893 publication-title: Organometallics – volume: 35 start-page: 9281 year: 1994 end-page: 9284 publication-title: Tetrahedron Lett. – volume: 96 start-page: 2011 year: 1996 end-page: 2033 publication-title: Chem. Rev. – volume: 130 start-page: 5753 year: 2008 end-page: 5762 publication-title: J. Am. Chem. Soc.  | 
    
| SSID | ssj0009633 | 
    
| Score | 1.8975574 | 
    
| Snippet | Aerobic oxidation: Mechanisms of aerobic oxidation of the PdII(OAc)2/pyridine catalyst system were evaluated by using density functional theory methods. The... The mechanism of catalyst oxidation by O(2) in Pd-catalyzed aerobic oxidation reactions has been the subject of considerable debate, particularly with respect...  | 
    
| SourceID | proquest pubmed wiley  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 2915 | 
    
| SubjectTerms | Catalysis density functional calculations dioxygen ligands homogeneous catalysis Ligands Molecular Structure oxidation Oxidation-Reduction Oxygen - chemistry palladium Palladium - chemistry Pyridines - chemistry  | 
    
| Title | Mechanism of Pd(OAc)2/Pyridine Catalyst Reoxidation by O2: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O2 Activation | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200802311 https://www.ncbi.nlm.nih.gov/pubmed/19191243 https://www.proquest.com/docview/67011620  | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0947-6539 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELZQX-BljMFGNxh-4AEe0jaOEye8ddUqQBQQolLfIju5TNnUZqKttPJv9k93ZzctIJ7GQyIl0UV27mx_d859x9ixUCrWPhQeLe6e1EHiJSAiD9eCrAO6EDKm3OHBdXQ-lJejcPQki9_xQ6wCbjQy7HxNA1ybaXtNGop9spnklsGM_B8_iKxPdbfmj0LrcrXkpfKIg7VmbeyI9nPx1_Dlc7hq15v-NtN1S91vJr9a85lpZY8vSBzf0pX37N0SjPKus54dtgGTD2yzV9eA22V_B0CZweV0zKuC3-YnN93sVLRvFw8lrnnAexT8WUxn_A6qP6Urz8TNgt-IM35Rlz8h0Ssi8gWOM0iV22wn4FflD0oz5njiLl24WMYPSUDzb2U1LseUY8nXrUCIjS_n3ayuyrbHhv3v971zb1nUwftJ1O-eEmFsMsQdhTZKxDm65lIlcZJHeAgjQevEpzoLCjoG7QcRWmzwJiIPrXwRBR9ZY1JNYJ_xEA0qDiDIIDaSeMuyrAgNJHkRCB-kbLKjWqkpfjfaCdETqObTNFK0_yQ6TfbJ6Tr97bg9UnRfE4Q8QZMJq7H1A0vvLFLSVbrSVUrEFaurz_8j9IVtuR0qCuscsMbsYQ6HCHRm5qs15n-i3vSN | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHODC-zGeOXCAQ9mWZk3LbUygARsgBBK3KmldVNBWtIfE-Df8U-xm3QTiBIdWaitXSe00n534M2OHQilfVyFxaHJ3pHYDJwDhOTgXRBXQiZA-5Q63b7zmo7x6qhW7CSkXxvJDTAJuNDLy_zUNcApIl6esodipPJU8pzBDB2hOeuisEC66nzJIoX3ZavJSOcTCWvA2VkT5u_xvCPM7YM1nnIslZoq22o0mryfDgTmJPn7QOP6rM8tscYxHed0a0Aqbge4qm28UZeDW2GcbKDk47Xd4lvC7-Oi2Hh2L8t2ol-K0B7xB8Z9Rf8DvIXtPbYUmbkb8Vpzyy6ICCom2iMsXOP5EsjhPeALeSp8p05jjiduM4WQcQiQBzc_SrJN2KM2ST1uBKBtfzutRUZhtnT1enD80ms64roPzQuzvjhI130QIPRJtlPBj9M6lCvwg9vAQRoLWQZVKLSioGDQhBGm-wZsIPrSqCs_dYLPdrAtbjNfQpnwX3Ah8I4m6LIqSmoEgTlxRBSlL7KDQaojfjRZDdBeyYT_0FC1BiUqJbVplh2-W3iNEDzZA1OOWmMhVNn2QMzyLkHQVTnQVEnfF5Gr7L0IHbL750G6Frcub6x22YBesKMqzy2YHvSHsIe4ZmP3csr8ABhr4rg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hkGgv5dGWprz20EM5mCTrtXfNLQQiHgEiVKTerF17XLlV4ogkEuHf8E-Z8caJQD3BwZZsa6xdz6zn29mdbxj7IZTSpgmZR87dk8aPvAhE6KEvSBpgMiE15Q5fXYdnd_Lid1DtJqRcGMcPMQ-40cgo_9c0wGGYZvUFayh2qkwlLynMcAK0IoNI066-k9sFgxTal6smL5VHLKwVb2ND1F_K_w9hvgSspcfprDFbtdVtNPl3OBnbw-TxFY3juzqzzj7N8ChvOQPaYEsw2GQf2lUZuM_s6QooOTgf9XmR8V7686aVHIh6b3qfo9sD3qb4z3Q05rdQPOSuQhO3U34jjvh5VQGFRLvE5QscfyJFWiY8Ae_mfyjTmOOJu4zhbBZCJAHDj_Oin_cpzZIvWoEoG1_OW0lVmO0Lu-uc_mqfebO6Dt5fYn_3lAi0TRB6ZMYqoVOcnUsV6SgN8RBWgjFRk0otKGhYNCEEadriTQQfRjVF6H9ly4NiAN8YD9CmtA9-AtpKoi5LkiywEKWZL5ogZY3tV1qN8bvRYogZQDEZxaGiJSjRqLEtp-x46Og9YpzBRoh6_BoTpcoWD0qGZxGTruK5rmLirphffX-L0D5b7Z104u759eU2--jWqyjIs8OWx_cT2EXYM7Z7pWE_A7Z9-DI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Pd%28OAc%292%2Fpyridine+catalyst+reoxidation+by+O2%3A+influence+of+labile+monodentate+ligands+and+identification+of+a+biomimetic+mechanism+for+O2+activation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Popp%2C+Brian+V&rft.au=Stahl%2C+Shannon+S&rft.date=2009&rft.eissn=1521-3765&rft.volume=15&rft.issue=12&rft.spage=2915&rft_id=info:doi/10.1002%2Fchem.200802311&rft_id=info%3Apmid%2F19191243&rft.externalDocID=19191243 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |