衛星放射輝度データ同化の観測演算子に対する機械学習アプローチ

観測演算子(OO: Observation Operator)は、データ同化(DA: Data Assimilation)において必要不可欠であり、モデル変数から観測値相当量を導出する。衛星DAでは、衛星マイクロ波輝度温度(BT: Brightness Temperature)のOOは、通常、放射伝達モデル(RTM: Radiative Transfer Model)に基づき、バイアス補正の手続きを用いる。物理ベースのRTMを用いずにOOを得る可能性を探るため、本研究では機械学習(ML: Machine Learning)をOOとして適用し(ML-OO)、晴天条件における海上の改良型マイクロ波...

Full description

Saved in:
Bibliographic Details
Published in気象集誌. 第2輯 Vol. 101; no. 1; pp. 79 - 95
Main Authors 三好, 建正, 寺崎, 康児
Format Journal Article
LanguageEnglish
Japanese
Published 公益社団法人 日本気象学会 2023
Subjects
Online AccessGet full text
ISSN0026-1165
2186-9057
DOI10.2151/jmsj.2023-005

Cover

Abstract 観測演算子(OO: Observation Operator)は、データ同化(DA: Data Assimilation)において必要不可欠であり、モデル変数から観測値相当量を導出する。衛星DAでは、衛星マイクロ波輝度温度(BT: Brightness Temperature)のOOは、通常、放射伝達モデル(RTM: Radiative Transfer Model)に基づき、バイアス補正の手続きを用いる。物理ベースのRTMを用いずにOOを得る可能性を探るため、本研究では機械学習(ML: Machine Learning)をOOとして適用し(ML-OO)、晴天条件における海上の改良型マイクロ波探査計(AMSU-A: Advanced Microwave Sounding Unit-A) チャンネル6,7および陸海両上のチャンネル8のBTを同化した。非静力学正二十面体大気モデル(NICAM)と局所アンサンブル変換カルマンフィルタ(LETKF)からなる参照システムを使用した。TOVSのための放射伝達(RTTOV: Radiative Transfer for TOVS)をOOとしてシステムに実装し、独立したバイアス補正手続きを組み合わせた(RTTOV-OO)。参照システムを使って従来型観測とBTを同化するDA実験を1ヶ月間行った。この実験で得られたモデル予報は、MLモデルを学習させML-OOを得るための観測と対にした。さらに、3つのDA実験を行い、ML-OOを用いた従来型観測とBTのDAは、RTTOV-OOのそれと比べて若干劣るが、従来型観測のみに基づく同化よりも良いことを明らかにした。また、ML-OOはバイアスを内部で処理し、それによりシステム全体の枠組みを簡略化した。提案されたML-OOは、(1)衛星特性に大きな変化がある場合にバイアスを現実的に扱えない、(2)多くのチャンネルに適用できない、(3)精度や計算速度においてRTTOV-OOと比較して性能が低下する、(4)物理ベースのRTMを依然として学習用に使用していることによる制限がある。今後の研究により、これらの欠点を軽減し、それにより提案されたML-OOを改善することが可能である。
AbstractList 観測演算子(OO: Observation Operator)は、データ同化(DA: Data Assimilation)において必要不可欠であり、モデル変数から観測値相当量を導出する。衛星DAでは、衛星マイクロ波輝度温度(BT: Brightness Temperature)のOOは、通常、放射伝達モデル(RTM: Radiative Transfer Model)に基づき、バイアス補正の手続きを用いる。物理ベースのRTMを用いずにOOを得る可能性を探るため、本研究では機械学習(ML: Machine Learning)をOOとして適用し(ML-OO)、晴天条件における海上の改良型マイクロ波探査計(AMSU-A: Advanced Microwave Sounding Unit-A) チャンネル6,7および陸海両上のチャンネル8のBTを同化した。非静力学正二十面体大気モデル(NICAM)と局所アンサンブル変換カルマンフィルタ(LETKF)からなる参照システムを使用した。TOVSのための放射伝達(RTTOV: Radiative Transfer for TOVS)をOOとしてシステムに実装し、独立したバイアス補正手続きを組み合わせた(RTTOV-OO)。参照システムを使って従来型観測とBTを同化するDA実験を1ヶ月間行った。この実験で得られたモデル予報は、MLモデルを学習させML-OOを得るための観測と対にした。さらに、3つのDA実験を行い、ML-OOを用いた従来型観測とBTのDAは、RTTOV-OOのそれと比べて若干劣るが、従来型観測のみに基づく同化よりも良いことを明らかにした。また、ML-OOはバイアスを内部で処理し、それによりシステム全体の枠組みを簡略化した。提案されたML-OOは、(1)衛星特性に大きな変化がある場合にバイアスを現実的に扱えない、(2)多くのチャンネルに適用できない、(3)精度や計算速度においてRTTOV-OOと比較して性能が低下する、(4)物理ベースのRTMを依然として学習用に使用していることによる制限がある。今後の研究により、これらの欠点を軽減し、それにより提案されたML-OOを改善することが可能である。
Author 三好, 建正
寺崎, 康児
Author_xml – sequence: 1
  fullname: 三好, 建正
  organization: 海洋研究開発機構 アプリケーションラボ
– sequence: 1
  fullname: 寺崎, 康児
  organization: 理化学研究所 開拓研究本部予測科学研究室
BookMark eNo9kM1Kw0AUhQepYK0ufYzUO0kmTZZS6g8U3OjGzTBJJtrQVkm6cZlGcGEXRYpVRIpdFERbC25ESvsww6R9DBsVN-dwOJzL5VtHmfp5nSO0hSGvYoK3_Vro51VQNQWArKCsik1DsYAUMigLoBoKxgZZQ-th6KdRLxhZdLJ4fkzue0lnKsdXi8mT_BqI-FrEE9GcyXZLtu5ENFoMPpLPt2TSmY-6ctgW0at8n4roQTRvkpde0h_L4WA-uxXNvoi7Ih6m8zjaQKseq4Z8889z6Hi3dFTcV8qHewfFnbLiYwObCnGIbQIxXW7puu3ZLrc1wJYDnmtauslsffkoZo5qG2bBBRtcsDwXPIPoFlY50XKo9HvXDxvslNOLoFJjwSVlQaPiVDlNsVAMmOIfTQHRJaD_3jljAfWZ9g0n-YFK
ContentType Journal Article
DOI 10.2151/jmsj.2023-005
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2186-9057
EndPage 95
ExternalDocumentID article_jmsj_101_1_101_2023_005_article_char_ja
GroupedDBID 29L
2WC
5GY
7.U
ABEFU
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
ECGQY
EJD
GROUPED_DOAJ
JSF
KQ8
OK1
P2P
RJT
RNS
TKC
VH1
VOH
ZY4
~02
ID FETCH-LOGICAL-j1618-5c5b8058de944bfbdeb3019c0fd8948ab44761ac2b687d0b0d09fd0f654912e53
ISSN 0026-1165
IngestDate Wed Sep 03 06:31:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
Japanese
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1618-5c5b8058de944bfbdeb3019c0fd8948ab44761ac2b687d0b0d09fd0f654912e53
OpenAccessLink http://dx.doi.org/10.2151/jmsj.2023-005
PageCount 17
ParticipantIDs jstage_primary_article_jmsj_101_1_101_2023_005_article_char_ja
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 気象集誌. 第2輯
PublicationYear 2023
Publisher 公益社団法人 日本気象学会
Publisher_xml – name: 公益社団法人 日本気象学会
References Chantry, M., S. Hatfield, P. Dueben, I. Polichtchouk, and T. Palmer, 2021: Machine learning emulation of gravity wave drag in numerical weather forecasting. J. Adv. Model. Earth Syst., 13, e2021MS002477, doi:10.1029/2021MS002477.
Rodríguez-Fernández, N., P. de Rosnay, C. Albergel, P. Richaume, F. Aires, C. Prigent, and Y. Kerr, 2019: SMOS neural network soil moisture data assimilation in a land surface model and atmospheric impact. Remote Sens., 11, 1334, doi:10.3390/rs11111334.
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453-1468.
Pal, A., S. Mahajan, and M. R. Norman, 2019: Using deep neural networks as cost-effective surrogate models for super-parameterized E3SM radiative transfer. Geophys. Res. Lett., 46, 6069-6079.
Satoh, M., H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki, A. T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, T. Ohno, S.-i Iga, T. Arakawa, T. Inoue, and H. Kubokawa, 2014: The Nonhydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.
O'Malley, T., E. Bursztein, J. Long, F. Chollet, H. Jin, and L. Invernizzi, 2019: KerasTuner. [Available at https://github.com/keras-team/keras-tuner.]
Krasnopolsky, V. M., M. S. Fox-Rabinovitz, and A. A. Belochitski, 2008: Decadal climate simulations using accurate and fast neural network emulation of full, longwave and shortwave, radiation. Mon. Wea. Rev., 136, 3683-3695.
Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic optimization. [Available at https://arxiv.org/abs/1412.6980#.]
Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 2943-2953.
Boukabara, S. A., V. Krasnopolsky, S. G. Penny, J. Q. Stewart, A. McGovern, D. Hall, J. E. Ten Hoeve, J. Hickey, H.-L. A. Huang, J. K. Williams, K. Ide, P. Tissot, S. E. Haupt, K. S. Casey, N. Oza, A. J. Geer, E. S. Maddy, and R. N. Hoffman, 2021: Outlook for exploiting artificial intelligence in the Earth and environmental sciences. Bull. Amer. Meteor. Soc., 102, E1016-E1032.
Kwon, Y., B. A. Forman, J. A. Ahmad, S. V. Kumar, and Y. Yoon, 2019: Exploring the utility of machine learning-based passive microwave brightness temperature data assimilation over terrestrial snow in High Mountain Asia. Remote Sens., 11, 2265, doi:10.3390/rs11192265.
Miyoshi, T., Y. Sato, and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev., 138, 2846-2866.
Okamoto, K., M. Kazumori, and H. Owada, 2005: The assimilation of ATOVS radiances in the JMA GIobal Analysis System. J. Meteor. Soc. Japan, 83, 201-217.
Terasaki, K., and T. Miyoshi, 2017: Assimilating AMSU-A radiances with the NICAM-LETKF. J. Meteor. Soc. Japan, 95, 433-446.
Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res.: Atmos., 118, 12970-12980.
Glorot, X., A. Bordes, and Y. Bengio, 2011: Deep sparse rectifier neural networks. Proceeding of the 14th International Conference on Artificial Intelligence and Statistics (AISTAT), Fort Lauderdale, FL, USA, 315-323. [Available at http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.]
Janjić, T., N. Bormann, M. Bocquet, J. A. Carton, S. E. Cohn, S. L. Dance, S. N. Losa, N. K. Nichols, R. Potthast, J. A. Waller, and P. Weston, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1257-1278.
Ott, J., M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, 2020: A Fortran-Keras deep learning bridge for scientific computing. Sci. Programming, 2020, 8888811, doi:10.1155/2020/8888811.
Bengio, Y., 2012: Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade. Montavon, G., G. B. Orr, and K. R Müller (eds.), Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Heidelberg, 437-478.
Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 368 pp.
Zou, C.-Z., and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications: AMSU-A intersatellite calibration. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.
Alvarado, M. J., V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard, K. E. Cady-Pereira, J. S. Delamere, and J.-L. Moncet, 2013: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies. Atmos. Chem. Phys., 13, 6687-6711.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112-126.
Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proceedings of the ECMWF Workshop on Assimilation of High spectral resolution sounders in NWP, Reading, UK, 97-112.
Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287-2299.
Zhou, Y., and C. Grassotti, 2020: Development of a machine learning-based radiometric bias correction for NOAA's Microwave Integrated Retrieval System (MiRS). Remote Sens., 12, 3160, doi:10.3390/rs12193160.
Eyre, J. R., S. J. English, and M. Forsythe, 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc., 146, 49-68.
Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407-1425.
Saunders, R., J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, and C. Lupu, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 2717-2737.
Kotsuki, S., Y. Ota, and T. Miyoshi, 2017: Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Quart. J. Roy. Meteor. Soc., 143, 2001-2015.
Scheck, L., 2021: A neural network based forward operator for visible satellite images and its adjoint. J. Quant. Spectrosc. Radiat. Transfer, 274, 107841, doi:10.1016/j.jqsrt.2021.107841.
Hocking, J., 2019: RTTOV v12 quick start guide. NWP SAF, 11 pp. [Available at https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/rttovquick-start.pdf.]
Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089.
Hatfield, S., M. Chantry, P. Düeben, P. Lopez, A. Geer, and T. Palmer, 2021: Building tangent-linear and adjoint models for data assimilation with neural networks. J. Adv. Model. Earth Syst., 13, e2021MS002521, doi:10.1029/2021MS002521.
Rivera, J. P., J. Verrelst, J. Gómez-Dans, J. Muñoz-Marí, J. Moreno, and G. Camps-Valls, 2015: An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens., 7, 9347-9370.
References_xml – reference: Okamoto, K., M. Kazumori, and H. Owada, 2005: The assimilation of ATOVS radiances in the JMA GIobal Analysis System. J. Meteor. Soc. Japan, 83, 201-217.
– reference: Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D, 230, 112-126.
– reference: Ott, J., M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, 2020: A Fortran-Keras deep learning bridge for scientific computing. Sci. Programming, 2020, 8888811, doi:10.1155/2020/8888811.
– reference: Boukabara, S. A., V. Krasnopolsky, S. G. Penny, J. Q. Stewart, A. McGovern, D. Hall, J. E. Ten Hoeve, J. Hickey, H.-L. A. Huang, J. K. Williams, K. Ide, P. Tissot, S. E. Haupt, K. S. Casey, N. Oza, A. J. Geer, E. S. Maddy, and R. N. Hoffman, 2021: Outlook for exploiting artificial intelligence in the Earth and environmental sciences. Bull. Amer. Meteor. Soc., 102, E1016-E1032.
– reference: Bengio, Y., 2012: Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade. Montavon, G., G. B. Orr, and K. R Müller (eds.), Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Heidelberg, 437-478.
– reference: Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 368 pp.
– reference: Miyoshi, T., Y. Sato, and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev., 138, 2846-2866.
– reference: Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proceedings of the ECMWF Workshop on Assimilation of High spectral resolution sounders in NWP, Reading, UK, 97-112.
– reference: Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287-2299.
– reference: Terasaki, K., and T. Miyoshi, 2017: Assimilating AMSU-A radiances with the NICAM-LETKF. J. Meteor. Soc. Japan, 95, 433-446.
– reference: Zou, C.-Z., and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications: AMSU-A intersatellite calibration. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.
– reference: Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453-1468.
– reference: Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089.
– reference: Kwon, Y., B. A. Forman, J. A. Ahmad, S. V. Kumar, and Y. Yoon, 2019: Exploring the utility of machine learning-based passive microwave brightness temperature data assimilation over terrestrial snow in High Mountain Asia. Remote Sens., 11, 2265, doi:10.3390/rs11192265.
– reference: Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res.: Atmos., 118, 12970-12980.
– reference: Glorot, X., A. Bordes, and Y. Bengio, 2011: Deep sparse rectifier neural networks. Proceeding of the 14th International Conference on Artificial Intelligence and Statistics (AISTAT), Fort Lauderdale, FL, USA, 315-323. [Available at http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.]
– reference: Zhou, Y., and C. Grassotti, 2020: Development of a machine learning-based radiometric bias correction for NOAA's Microwave Integrated Retrieval System (MiRS). Remote Sens., 12, 3160, doi:10.3390/rs12193160.
– reference: O'Malley, T., E. Bursztein, J. Long, F. Chollet, H. Jin, and L. Invernizzi, 2019: KerasTuner. [Available at https://github.com/keras-team/keras-tuner.]
– reference: Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 2943-2953.
– reference: Scheck, L., 2021: A neural network based forward operator for visible satellite images and its adjoint. J. Quant. Spectrosc. Radiat. Transfer, 274, 107841, doi:10.1016/j.jqsrt.2021.107841.
– reference: Satoh, M., H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki, A. T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, T. Ohno, S.-i Iga, T. Arakawa, T. Inoue, and H. Kubokawa, 2014: The Nonhydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.
– reference: Saunders, R., J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, and C. Lupu, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 2717-2737.
– reference: Hatfield, S., M. Chantry, P. Düeben, P. Lopez, A. Geer, and T. Palmer, 2021: Building tangent-linear and adjoint models for data assimilation with neural networks. J. Adv. Model. Earth Syst., 13, e2021MS002521, doi:10.1029/2021MS002521.
– reference: Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407-1425.
– reference: Eyre, J. R., S. J. English, and M. Forsythe, 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc., 146, 49-68.
– reference: Hocking, J., 2019: RTTOV v12 quick start guide. NWP SAF, 11 pp. [Available at https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/rttovquick-start.pdf.]
– reference: Kotsuki, S., Y. Ota, and T. Miyoshi, 2017: Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Quart. J. Roy. Meteor. Soc., 143, 2001-2015.
– reference: Alvarado, M. J., V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard, K. E. Cady-Pereira, J. S. Delamere, and J.-L. Moncet, 2013: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies. Atmos. Chem. Phys., 13, 6687-6711.
– reference: Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic optimization. [Available at https://arxiv.org/abs/1412.6980#.]
– reference: Rivera, J. P., J. Verrelst, J. Gómez-Dans, J. Muñoz-Marí, J. Moreno, and G. Camps-Valls, 2015: An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens., 7, 9347-9370.
– reference: Rodríguez-Fernández, N., P. de Rosnay, C. Albergel, P. Richaume, F. Aires, C. Prigent, and Y. Kerr, 2019: SMOS neural network soil moisture data assimilation in a land surface model and atmospheric impact. Remote Sens., 11, 1334, doi:10.3390/rs11111334.
– reference: Chantry, M., S. Hatfield, P. Dueben, I. Polichtchouk, and T. Palmer, 2021: Machine learning emulation of gravity wave drag in numerical weather forecasting. J. Adv. Model. Earth Syst., 13, e2021MS002477, doi:10.1029/2021MS002477.
– reference: Pal, A., S. Mahajan, and M. R. Norman, 2019: Using deep neural networks as cost-effective surrogate models for super-parameterized E3SM radiative transfer. Geophys. Res. Lett., 46, 6069-6079.
– reference: Janjić, T., N. Bormann, M. Bocquet, J. A. Carton, S. E. Cohn, S. L. Dance, S. N. Losa, N. K. Nichols, R. Potthast, J. A. Waller, and P. Weston, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 1257-1278.
– reference: Krasnopolsky, V. M., M. S. Fox-Rabinovitz, and A. A. Belochitski, 2008: Decadal climate simulations using accurate and fast neural network emulation of full, longwave and shortwave, radiation. Mon. Wea. Rev., 136, 3683-3695.
SSID ssj0026476
ssib026971113
Score 2.4715176
Snippet 観測演算子(OO: Observation Operator)は、データ同化(DA: Data Assimilation)において必要不可欠であり、モデル変数から観測値相当量を導出する。衛星DAでは、衛星マイクロ波輝度温度(BT: Brightness Temperature)のOOは、通常、放射伝達モデル(RTM:...
SourceID jstage
SourceType Publisher
StartPage 79
SubjectTerms forward operator
machine learning
neural network
observation operator
satellite radiance data assimilation
Title 衛星放射輝度データ同化の観測演算子に対する機械学習アプローチ
URI https://www.jstage.jst.go.jp/article/jmsj/101/1/101_2023-005/_article/-char/ja
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 気象集誌. 第2輯, 2023, Vol.101(1), pp.79-95
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pa9RAFA-1XryIf_Fv2YPjpaQm2UkycxEmaZaiVBBaKF6WJJsFi7ZS24u37Qoe7KFIsYpIsYeCaGvBi0hpv4DfIuy2H8P33mTTbfFgFcIwO3kz83vvJXlvZmfmGcatBNzapkgcM_W5a_I4rZqx3fRNLhJhpVnMYwrnM_7AG5vk96bcqYFTv_pWLS3MJyPpiz_uK_kXrUIZ6BV3yZ5As2WjUAB50C-koGFI_0rHLBJM2UwGLPKYFEzWKMNZELHIZYHFBEeaIGRylEoUUx6LqkzA5RcZuIsZhwU1pJFQK8QMpFIT20xF1JfHgip2EUA-pEyI3UU-Ekgfa6lRbKGoFVBJjfBQiZRFX4IwK1lgVg6i1dURoY9gpFMQK6eAKnuYgewIeGy8388mbBbRA_s2SimSKCjhESMKuBsZJuAhXE4hJVWuc2YRRy6FJFAguVF8GEmGAYoRMQPU6iG9ZlQRCTjoUUmvWECSESjb_lkWvQWa3ojiPgrVJ5iKsPU0CSVKCx5k4BI2aFUNk7p9xIeZsKeUY4yXUuWkL9VvqRzPxKORtJ2mMgwfZkpLH-hdWq9iLqj_NdW2SAfpKbwaHcn0uL1Efw_t5dPn0yPItWlZ7qFjUC7XLB7wOtLhmsC6TSnWqEONeu8-bhSsT8No5bTjex7GE7n_sPy6O570wbCWfhJ44hT6seRUn4CLkO4cAQS-4TSMlHqrLMnxmzhnnC1GbBWlez9vDGQzF4yr4zDYnJ2j_6Qqtyvhk8cw8qNfF41HB58-dN-tdVd2O9svD3Y-dn5u5O1XeXsnX9zrLC91lt7mra2Dje_dH1-7Oyv7W6udzeW89aXzbTdvvc8XX3c_r3XXtzubG_t7b_LF9by9mrc3sXq7dcmYrEUT4ZhZhDAxpzEShemmLnzzXNHIJOdJM2lkCVhUmVrNhpBcxAkHIdhx6iSe8BtWYjUs2WxYTc_l0nYyt3rZGJyZncmuGBUZpzJNeENyO4YrEzB0SGwuEyvLMGrFVeOuFlP9mT6npn5CtV373wauG2e0znCC8oYxOD-3kN0El30-GaKpriF6Hn4DQRrKTg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%A1%9B%E6%98%9F%E6%94%BE%E5%B0%84%E8%BC%9D%E5%BA%A6%E3%83%87%E3%83%BC%E3%82%BF%E5%90%8C%E5%8C%96%E3%81%AE%E8%A6%B3%E6%B8%AC%E6%BC%94%E7%AE%97%E5%AD%90%E3%81%AB%E5%AF%BE%E3%81%99%E3%82%8B%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%82%A2%E3%83%97%E3%83%AD%E3%83%BC%E3%83%81&rft.jtitle=%E6%B0%97%E8%B1%A1%E9%9B%86%E8%AA%8C.+%E7%AC%AC2%E8%BC%AF&rft.au=%E4%B8%89%E5%A5%BD%2C+%E5%BB%BA%E6%AD%A3&rft.au=%E5%AF%BA%E5%B4%8E%2C+%E5%BA%B7%E5%85%90&rft.date=2023&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%B0%97%E8%B1%A1%E5%AD%A6%E4%BC%9A&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=101&rft.issue=1&rft.spage=79&rft.epage=95&rft_id=info:doi/10.2151%2Fjmsj.2023-005&rft.externalDocID=article_jmsj_101_1_101_2023_005_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon