黄鉄鉱の常温酸化溶解に関する実験地球化学的研究

Saved in:
Bibliographic Details
Published in鉱物学雜誌 Vol. 27; no. 2; pp. 93 - 103
Main Author 笹木, 圭子
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本鉱物科学会 11.05.1998
Online AccessGet full text
ISSN0454-1146
1883-7018
DOI10.2465/gkk1952.27.93

Cover

Author 笹木, 圭子
Author_xml – sequence: 1
  fullname: 笹木, 圭子
  organization: 北海道大学大学院工学研究科環境資源工学
BookMark eNo9kM9Kw0AYxBepYK09-hip-2V38yVHLfUPFLzoOWzSbE1bqyS9eIzWg-hBUAqKoCioRSx6KUEfJ6Qxb2HBIgzzO8wwh1kkhe5B1yNkGWhF54ZYabbbYAm9omPFYnOkCKbJNKRgFkiRcsE1AG4skHIY-g6lDKjQEYqkln_387OpPpNolMbxJB7mp3F6MZh8jX9enpLoLR88JtFNcnyeju7z16v07iO7PJkW0vfn7LafPVxnw_ESmVeyE3rlGUtkd722U93U6tsbW9XVutYCQbmGDlqeaqArDYmWYkiVkgAKucVBCqYQwDF1Jo0plGc4DVdJqpABGMi4YCWy9rfbCnuy6dmHgb8vgyNbBj3f7Xj27ARbR3tmFvsP3T0Z2C3JfgF6aXJH
ContentType Journal Article
Copyright 日本鉱物科学会
Copyright_xml – notice: 日本鉱物科学会
DOI 10.2465/gkk1952.27.93
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1883-7018
EndPage 103
ExternalDocumentID article_gkk1952_27_2_27_2_93_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j1504-7b79efd7ca6a79f370ffa11f74941a53f711b823a61b8fe6bdcfa0f7311673453
ISSN 0454-1146
IngestDate Thu Aug 17 20:28:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1504-7b79efd7ca6a79f370ffa11f74941a53f711b823a61b8fe6bdcfa0f7311673453
OpenAccessLink https://www.jstage.jst.go.jp/article/gkk1952/27/2/27_2_93/_article/-char/ja
PageCount 11
ParticipantIDs jstage_primary_article_gkk1952_27_2_27_2_93_article_char_ja
PublicationCentury 1900
PublicationDate 1998/05/11
PublicationDateYYYYMMDD 1998-05-11
PublicationDate_xml – month: 05
  year: 1998
  text: 1998/05/11
  day: 11
PublicationDecade 1990
PublicationTitle 鉱物学雜誌
PublicationTitleAlternate 鉱物学雜誌
PublicationYear 1998
Publisher 一般社団法人 日本鉱物科学会
Publisher_xml – name: 一般社団法人 日本鉱物科学会
References 27) Buchanan, R. E. and Gibbons, N. E. (eds.) (1974): Bergey's Manual of Determinative Bacteriology, 8th Edition Baltimore, Williams & Wilkins Company, pp. 458-461.
44) Zouboulis, A, I., Kydros, K. A., and Matis, K. A. (1995):Removal of hexavalent chromium anions from solutions by pyrite fines. Wat. Res., 29,1755-1760.
52) Sasaki, K., Tsunekawa, M., Tanaka, S., Fukushima, M., and Konno, H.: The suppression of microbially mediated dissolution of pyrite by humic substances and related compounds. submitted to Wat. Res.
8) たとえば,Ingledew, W. J. (1982): Thibacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochimica et Biophysica Acta, 683, 89-117.
42) Jean, G. E. and Bancroft, G. M. (1986): Heavy metal adsorption by sulphide mineral surfaces. Geochim. Cosmochim. Acta, 50,1455-1463.
3) Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K. (1984): Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta, 48, 2669-2678.
60) Sasaki, K., Tsunekawa, M., Tanaka, S., and Konno, H. (1997): Suppression of pyrite weathering by humic substances. Proceedings of International Symposium on BIOMINE'97, PE. 9.1-PE. 9.2.
56) 酒井 昇・石先千春・千田 佶・下飯坂潤三(1987):第二鉄イオンによる黄鉄鉱の溶解速度.日本鉱業会誌,103,395-400.
48) Lalvani, S. B, and Zhang, G. (1994): Mitigation of pyrite dissolution due to humic acids addition. Fuel Sci. Technol. Intl., 12, 963-982.
50) Sasaki, K., Tsunekawa, M., Tanaka, S., and Konno, H.(1996): Suppression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 119, 241-253.
18) 稲垣道夫(1973):粉粒体工学,化学工学協会,槙書店(東京).
7) たとえば, Brock, T. D., Cook, S., Petersen, S., and Mosser, J. L. (1976): Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim.Cnemnrhim Arta 40,493-500.
51) Liu, J. C. and Huang, C. P. (1992): Electrokinetic characteristics of some metal sulfide-water interfaces. Langmuir, 8,1851-1856.
43) Zouboulis, A. I., Kydros, K. A., and Matis, K. A. (1993):Arsenic(III) and arsenic(V) removal from solutions by pyrite fines. Separ. Sci. Technol., 28, 2449-2463.
53) Garrels, R. M., and Thompson, M. E. (1960): Oxidation of pyrite by iron sulfate solutions. Amer. J. Sci., 258-A, 57-67.
46) Wu, J. and Luther III, G. W. (1995): Complexation of iron (III) by natural organic ligands in Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar. Chem., 50,159-177.
4) Tran, L. and Harris, R. F. (1989): Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim. Cosmochim. Acta, 53, 2341-2348.
54) Mathews, C. T., and Robins, R. G. (1972): The oxidation of iron disulfide by ferric sulphate. Aust. Chem. Eng., Aug. , 21-25.
39) Brennan, E. W. and Lindsay, W. L. (1996): The role of pyrite in controlling metal ion activities in highly reduced soils. Geochim. Cosmochim. Acta, 60, 3609-3618.
25) Singer, P. C. and Stumm, W. (1970): Acid mine drainage:The rate-determining step. Science, 167, 1121-1123.
15) Caruccio, F. T., Geidel, G., and Swell, J. M. (1976): The character of drainage as a function of the occurrence of framboidal pyrite and ground water quality in Eastern Kentucky. Pap. Symp. Coal Mine Drain Res., 6,1-16.
58) Williamson, M. A., and Rimstidt, J. D. (1994): The kinetic and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta, 58, 5443-5454.
38) Sasaki, K., Tsunekawa, M. and Konno, H. (1996): Effect of cations on pyrite oxidation with Fe(III) ions near pH 2. J. Min. Mat. Proc. Inst. Japan, 112, 231-237.
10) Smith, E. E. and Shumate, K. S. (1970): Sulfide to sulfate reaction mechanism. Water Pollut. Control Res. Ser.Rept. 14010 FPS 02170, Fed. Water Quality Admin., U. S. Dept. of the Interior, 1-115.
31) Sasaki, K., Tsunekawa, M., Ohtsuka, T., and Konno, H.(1998): The role of sulfur-oxidizing bacteria, Thiobacillus thiooxidans, in pyrite weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133, 269-278.
16) Sasaki, K., Konno, H. and Inagaki, M. (1994): Structural strain in pyrite evaluated by X-ray powder diffraction. J. Mater. Sci., 29,1666-1669.
34) Rinker, M. J., Nesbitt, H. Wand Pratt, A. R. (1997): Marcasite oxidation in low-temperature acidic (pH 3.0) solutions:Mechanism and rate laws. Amer. Mineral., 82,900-912.
33) Duncan, D. W. and Walden, C. C. (1972): Microbiological leaching in the presence of ferric iron. Dev. Ind. Microbiol.,13, 66-75.
37) Sasaki, K., Tsunekawa, M. and Konno, H. (1996): Effect of Fe(II) ions on pyrite oxidation with Fe(III) ions near pH 2. J. Min. Mat. Proc. Inst. Japan, 112, 49-53.
22) 金野英隆・笹木圭子・恒川昌美・高森隆勝・古市隆三郎(1991):バクテリアリーチングにおけるパイライト表面生成物のX線光電子分光分析.分析化学,40,609-616.
20) Sasaki, K., Tsunekawa, M., Ohtsuka, T. and Konno, H. (1995): Confirmation of sulfur-rich layer formed on pyrite after dissolution by Fe(III) ions around pH 2. Geochim. Cosmochim. Acta, 59, 3155-3158.
11) Neavel, R. C. (1966): Sulfur in coal; its distribution in the seam and in mine products. Ph. D. Thesis, Pennsylvania State Univ.
41) Brown, J. R., Bancroft, G. M., Fyfe, W. S., and MacLean, R. E. N. (1979): Mercury removal from water by iron sulphide minerals. Environ. Sci. Tech., 13, 1142-1145.
36) Smith, R. M. and Martell, A. E. (1972): “Critical Stability Constants”, Vol. 4, Plenum, New York.
28) Lacey, D. Y. and Lawson, F. (1970): Kinetics of the liquidphase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotech. Bioeng.12, 29-50.
57) Rimstidt, J. D., and Newcomb, W. D. (1993): Measurement and analysis of rate data: The rate of ferric iron with pyrite. Geochim. Cosmochim. Acta, 57,1919-1934.
5) Luther III, G. W. (1987): Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochim. Cosmochim. Acta, 51, 3193-3199.
9) 原田種臣・国吉信行(1985):バクテリアによる酸化が黄鉄鉱の浮遊性におよぼす影響.日本鉱業会誌,101,719-724.
14) Brown, K. E. and Cohen, A. D. (1995): Stratigraphic and micropetrographic occurrences of pyrite in sediments at the confluence of carbonate and peat-forming depositional systems, southern Florida, U. S. A. Org. Geochem., 22,105-126.
13) Ostwald, J. and England, B. M. (1979): The relationship between euhedral and framboidal pyrite in base-metal sulphide ore. Minreral Mag., 43, 297-300.
26) Silverman, M. P. (1967): Mechanism of bacterial pyrite oxidation. J. Bacteriol., 94,1046-1051.
1) Lowson, R. T. (1982): Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82,461-497.
23) Moses, C. O., Nordstrom, D. K., Herman, J. S., and Mills,A. L. (1987): Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta, 51, 1561-1571.
17) Sasaki, K. (1994): Effect of grinding on the rate of oxidation of pyrite by oxygen. Geochim. Cosmochim. Acta, 58, 4649-4655.
55) Wiersma, C. L., and Rimstidt, J. D. (1984): Rates of reaction of pyrite and marcasite with ferric iron at pH 2.Geochim. Cosmochim. Acta, 48, 85-92.
21) McKibben, M. A. and Barnes, H. L. (1986): Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta, 50,1509-1520.
40) Larsen, F. and Postma, D. (1997): Nickel mobilization in a groundwater well field: release by pyrite oxidation and desorption from manganese oxides. Environ. Sci. Technol., 31, 2589-2595.
2) Birle, J. D. (1963): “Sulfide to sulfate reaction mechanism in pyrite materials.” M. S. Thesis, The Ohio State University.
12) Sweeney, R. E. and Kaplan, I. R. (1973): Pyrite framboidal formation: laboratory synthesis and marine sediments. Econ. Geol., 68, 618-634.
47) 宮島 徹・森みどり(1996):腐植物質の溶液内錯平衡.分析化学,45,369-399.
59) 笹木圭子・恒川昌美・金野英隆(1994):酸性溶液における黄鉄鉱の酸化溶解の不定比性.分析化学,43,911-917.
29) 笹木圭子・恒川昌美・金野英隆・平島 剛・高森隆勝(1993):Thiobacillus ferrooxidansによる黄鉄鉱浸出の挙動と鉱物表面のキャラクタリゼーション.資源と素材,109,29-35.
6) 今井和民(1984):独立栄養細菌,化学同人(京都).
19) Buckley, A. N. and Woods, R. (1987): The surface oxidation of pyrite. Appl. Surf. Sci., 27,437-452.
24) Moses, C. O. and Herman, J. S. (1991): Pyrite oxidation at circumneutral pH. Geochim. Cosmochim. Acta, 55, 471-482.
32) Beck, J. V. and Brown, G. D. (1968): Direct sulfide oxidation in the solubilization of sulfide ores by Thiobacillus ferrooxidans. J. Bacteriol., 96,1433-1434.
49) Sasaki, K. and Tsunekawa, M. (1996): Evaluation of tannic and fulvic acids as inhibitors of cell growth, and iron and sulfur oxidation in Thiobacillus ferrooxidans and Thiobacillus thiooxidans. J. Min. Mat. Proc. Inst. Japan, 112, 929-933.
30) Sasaki, K. (1997): Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. Can.Mineral., 35, 999-1008.
35) Sasaki, K., Tsunekawa, M., Hasebe, K. and Konno, H. (1995): Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 101, 39-49.
45) Skogerboe,R. K. and Wilson, S. A. (1981): Reduction of ionic species by fulvic acid. Anal. Chem., 53, 228-232.
References_xml – reference: 29) 笹木圭子・恒川昌美・金野英隆・平島 剛・高森隆勝(1993):Thiobacillus ferrooxidansによる黄鉄鉱浸出の挙動と鉱物表面のキャラクタリゼーション.資源と素材,109,29-35.
– reference: 17) Sasaki, K. (1994): Effect of grinding on the rate of oxidation of pyrite by oxygen. Geochim. Cosmochim. Acta, 58, 4649-4655.
– reference: 15) Caruccio, F. T., Geidel, G., and Swell, J. M. (1976): The character of drainage as a function of the occurrence of framboidal pyrite and ground water quality in Eastern Kentucky. Pap. Symp. Coal Mine Drain Res., 6,1-16.
– reference: 36) Smith, R. M. and Martell, A. E. (1972): “Critical Stability Constants”, Vol. 4, Plenum, New York.
– reference: 40) Larsen, F. and Postma, D. (1997): Nickel mobilization in a groundwater well field: release by pyrite oxidation and desorption from manganese oxides. Environ. Sci. Technol., 31, 2589-2595.
– reference: 19) Buckley, A. N. and Woods, R. (1987): The surface oxidation of pyrite. Appl. Surf. Sci., 27,437-452.
– reference: 31) Sasaki, K., Tsunekawa, M., Ohtsuka, T., and Konno, H.(1998): The role of sulfur-oxidizing bacteria, Thiobacillus thiooxidans, in pyrite weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133, 269-278.
– reference: 60) Sasaki, K., Tsunekawa, M., Tanaka, S., and Konno, H. (1997): Suppression of pyrite weathering by humic substances. Proceedings of International Symposium on BIOMINE'97, PE. 9.1-PE. 9.2.
– reference: 57) Rimstidt, J. D., and Newcomb, W. D. (1993): Measurement and analysis of rate data: The rate of ferric iron with pyrite. Geochim. Cosmochim. Acta, 57,1919-1934.
– reference: 53) Garrels, R. M., and Thompson, M. E. (1960): Oxidation of pyrite by iron sulfate solutions. Amer. J. Sci., 258-A, 57-67.
– reference: 30) Sasaki, K. (1997): Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. Can.Mineral., 35, 999-1008.
– reference: 49) Sasaki, K. and Tsunekawa, M. (1996): Evaluation of tannic and fulvic acids as inhibitors of cell growth, and iron and sulfur oxidation in Thiobacillus ferrooxidans and Thiobacillus thiooxidans. J. Min. Mat. Proc. Inst. Japan, 112, 929-933.
– reference: 26) Silverman, M. P. (1967): Mechanism of bacterial pyrite oxidation. J. Bacteriol., 94,1046-1051.
– reference: 20) Sasaki, K., Tsunekawa, M., Ohtsuka, T. and Konno, H. (1995): Confirmation of sulfur-rich layer formed on pyrite after dissolution by Fe(III) ions around pH 2. Geochim. Cosmochim. Acta, 59, 3155-3158.
– reference: 18) 稲垣道夫(1973):粉粒体工学,化学工学協会,槙書店(東京).
– reference: 54) Mathews, C. T., and Robins, R. G. (1972): The oxidation of iron disulfide by ferric sulphate. Aust. Chem. Eng., Aug. , 21-25.
– reference: 48) Lalvani, S. B, and Zhang, G. (1994): Mitigation of pyrite dissolution due to humic acids addition. Fuel Sci. Technol. Intl., 12, 963-982.
– reference: 32) Beck, J. V. and Brown, G. D. (1968): Direct sulfide oxidation in the solubilization of sulfide ores by Thiobacillus ferrooxidans. J. Bacteriol., 96,1433-1434.
– reference: 2) Birle, J. D. (1963): “Sulfide to sulfate reaction mechanism in pyrite materials.” M. S. Thesis, The Ohio State University.
– reference: 34) Rinker, M. J., Nesbitt, H. Wand Pratt, A. R. (1997): Marcasite oxidation in low-temperature acidic (pH 3.0) solutions:Mechanism and rate laws. Amer. Mineral., 82,900-912.
– reference: 51) Liu, J. C. and Huang, C. P. (1992): Electrokinetic characteristics of some metal sulfide-water interfaces. Langmuir, 8,1851-1856.
– reference: 52) Sasaki, K., Tsunekawa, M., Tanaka, S., Fukushima, M., and Konno, H.: The suppression of microbially mediated dissolution of pyrite by humic substances and related compounds. submitted to Wat. Res.
– reference: 25) Singer, P. C. and Stumm, W. (1970): Acid mine drainage:The rate-determining step. Science, 167, 1121-1123.
– reference: 9) 原田種臣・国吉信行(1985):バクテリアによる酸化が黄鉄鉱の浮遊性におよぼす影響.日本鉱業会誌,101,719-724.
– reference: 50) Sasaki, K., Tsunekawa, M., Tanaka, S., and Konno, H.(1996): Suppression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 119, 241-253.
– reference: 58) Williamson, M. A., and Rimstidt, J. D. (1994): The kinetic and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta, 58, 5443-5454.
– reference: 6) 今井和民(1984):独立栄養細菌,化学同人(京都).
– reference: 10) Smith, E. E. and Shumate, K. S. (1970): Sulfide to sulfate reaction mechanism. Water Pollut. Control Res. Ser.Rept. 14010 FPS 02170, Fed. Water Quality Admin., U. S. Dept. of the Interior, 1-115.
– reference: 22) 金野英隆・笹木圭子・恒川昌美・高森隆勝・古市隆三郎(1991):バクテリアリーチングにおけるパイライト表面生成物のX線光電子分光分析.分析化学,40,609-616.
– reference: 43) Zouboulis, A. I., Kydros, K. A., and Matis, K. A. (1993):Arsenic(III) and arsenic(V) removal from solutions by pyrite fines. Separ. Sci. Technol., 28, 2449-2463.
– reference: 38) Sasaki, K., Tsunekawa, M. and Konno, H. (1996): Effect of cations on pyrite oxidation with Fe(III) ions near pH 2. J. Min. Mat. Proc. Inst. Japan, 112, 231-237.
– reference: 4) Tran, L. and Harris, R. F. (1989): Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim. Cosmochim. Acta, 53, 2341-2348.
– reference: 21) McKibben, M. A. and Barnes, H. L. (1986): Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta, 50,1509-1520.
– reference: 14) Brown, K. E. and Cohen, A. D. (1995): Stratigraphic and micropetrographic occurrences of pyrite in sediments at the confluence of carbonate and peat-forming depositional systems, southern Florida, U. S. A. Org. Geochem., 22,105-126.
– reference: 37) Sasaki, K., Tsunekawa, M. and Konno, H. (1996): Effect of Fe(II) ions on pyrite oxidation with Fe(III) ions near pH 2. J. Min. Mat. Proc. Inst. Japan, 112, 49-53.
– reference: 41) Brown, J. R., Bancroft, G. M., Fyfe, W. S., and MacLean, R. E. N. (1979): Mercury removal from water by iron sulphide minerals. Environ. Sci. Tech., 13, 1142-1145.
– reference: 12) Sweeney, R. E. and Kaplan, I. R. (1973): Pyrite framboidal formation: laboratory synthesis and marine sediments. Econ. Geol., 68, 618-634.
– reference: 47) 宮島 徹・森みどり(1996):腐植物質の溶液内錯平衡.分析化学,45,369-399.
– reference: 7) たとえば, Brock, T. D., Cook, S., Petersen, S., and Mosser, J. L. (1976): Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim.Cnemnrhim Arta 40,493-500.
– reference: 45) Skogerboe,R. K. and Wilson, S. A. (1981): Reduction of ionic species by fulvic acid. Anal. Chem., 53, 228-232.
– reference: 13) Ostwald, J. and England, B. M. (1979): The relationship between euhedral and framboidal pyrite in base-metal sulphide ore. Minreral Mag., 43, 297-300.
– reference: 11) Neavel, R. C. (1966): Sulfur in coal; its distribution in the seam and in mine products. Ph. D. Thesis, Pennsylvania State Univ.
– reference: 55) Wiersma, C. L., and Rimstidt, J. D. (1984): Rates of reaction of pyrite and marcasite with ferric iron at pH 2.Geochim. Cosmochim. Acta, 48, 85-92.
– reference: 33) Duncan, D. W. and Walden, C. C. (1972): Microbiological leaching in the presence of ferric iron. Dev. Ind. Microbiol.,13, 66-75.
– reference: 46) Wu, J. and Luther III, G. W. (1995): Complexation of iron (III) by natural organic ligands in Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar. Chem., 50,159-177.
– reference: 23) Moses, C. O., Nordstrom, D. K., Herman, J. S., and Mills,A. L. (1987): Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta, 51, 1561-1571.
– reference: 27) Buchanan, R. E. and Gibbons, N. E. (eds.) (1974): Bergey's Manual of Determinative Bacteriology, 8th Edition Baltimore, Williams & Wilkins Company, pp. 458-461.
– reference: 24) Moses, C. O. and Herman, J. S. (1991): Pyrite oxidation at circumneutral pH. Geochim. Cosmochim. Acta, 55, 471-482.
– reference: 56) 酒井 昇・石先千春・千田 佶・下飯坂潤三(1987):第二鉄イオンによる黄鉄鉱の溶解速度.日本鉱業会誌,103,395-400.
– reference: 3) Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K. (1984): Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta, 48, 2669-2678.
– reference: 8) たとえば,Ingledew, W. J. (1982): Thibacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochimica et Biophysica Acta, 683, 89-117.
– reference: 16) Sasaki, K., Konno, H. and Inagaki, M. (1994): Structural strain in pyrite evaluated by X-ray powder diffraction. J. Mater. Sci., 29,1666-1669.
– reference: 28) Lacey, D. Y. and Lawson, F. (1970): Kinetics of the liquidphase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotech. Bioeng.12, 29-50.
– reference: 1) Lowson, R. T. (1982): Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82,461-497.
– reference: 59) 笹木圭子・恒川昌美・金野英隆(1994):酸性溶液における黄鉄鉱の酸化溶解の不定比性.分析化学,43,911-917.
– reference: 5) Luther III, G. W. (1987): Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochim. Cosmochim. Acta, 51, 3193-3199.
– reference: 39) Brennan, E. W. and Lindsay, W. L. (1996): The role of pyrite in controlling metal ion activities in highly reduced soils. Geochim. Cosmochim. Acta, 60, 3609-3618.
– reference: 42) Jean, G. E. and Bancroft, G. M. (1986): Heavy metal adsorption by sulphide mineral surfaces. Geochim. Cosmochim. Acta, 50,1455-1463.
– reference: 35) Sasaki, K., Tsunekawa, M., Hasebe, K. and Konno, H. (1995): Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 101, 39-49.
– reference: 44) Zouboulis, A, I., Kydros, K. A., and Matis, K. A. (1995):Removal of hexavalent chromium anions from solutions by pyrite fines. Wat. Res., 29,1755-1760.
SSID ssib003105271
ssj0001473454
ssib000592332
ssib007833094
ssib022623005
ssib003171313
Score 1.3325521
SourceID jstage
SourceType Publisher
StartPage 93
Title 黄鉄鉱の常温酸化溶解に関する実験地球化学的研究
URI https://www.jstage.jst.go.jp/article/gkk1952/27/2/27_2_93/_article/-char/ja
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 鉱物学雜誌, 1998/05/11, Vol.27(2), pp.93-103
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-7018
  dateEnd: 20001231
  omitProxy: true
  ssIdentifier: ssj0001473454
  issn: 0454-1146
  databaseCode: KQ8
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNSK4EX8xG96cI5ZMx-ZDzwla2pRFIQWegvJbiJsoRXZHvS2Wg-iB0EpKIKioBax6KUs-nOW7br_wvcmyTbFHqxCGB4zb968jyTzZpJ5z3EuZSpjOpXSFZnOociVm_pe6qL3rcEhb0mKp5Fv3pJzC-L6or84dSCr_bW02k0brQd7niv5F6tCHdgVT8nuw7ITolABMNgXSrAwlH9lYxIZEoZECwS02QFCSiIOTiIJIhL5JNR4RRLLwFgcWwlNukmMtE0BCQEABEUCXnUPERkQAlbWGGMBRnSI3YG-mUWcQBPDscY0SeiRSBHjEc1rQwDyVRJI2xRYVmEgj5gCAJ5l3VGuCaIQQLYnFIClEAdCboHUZKPXUoLxDQoE7cAU3EElV9C3oFAkDi22Ooqzf75Ld7Y6SCRQN9pD8lojQSQLlVaXMDKqBxTGifEtcoAXasWzvWBowPcrHpp7iaJQzYbWZAI6oKeg9mIWvnBptXWaFROH1txVXjmXlDNLEfWgfIJYbZookkKWDge1QR7-mMuYkBj2487SEjU-azDVqHrtCg9e3nxxiRczFZeF4XHViCf44g4sIw4ymPwww8mN2_WQP-Dl144Xg8fvM1V_7SvKa16f0pzXdgXAgWeTpAd2a1MoLmz-wYmmiui2KNLlXQKB39eBVVD1B6V16uaPOkfK1dhMUAhwzJnqJMedQ9dstuv7J5xo_HNt_ASu74Pe5rDf3-5vjB_3h8_Wt39s_fr0YdD7Ml5_P-i9Gjx8Otx8O_78Yvjm2-j5I0AYfv04er02evdytLF10lmYjeabc26Zd8TtwPJIuCpVJsvbqpXIRJmcKy_PE0pzJYygic9zRWmqGU_gPabzTKbtVp54ueL4TRMk56ec6eWV5ey0M5OaVOsMluyZMULCYkwklLXbnIOXrFXSPuNcKeSP7xbBZeL92PPsf_U-5xzeecjOO9Pde6vZBfCwu-lFe3_8Bsw1qRQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%BB%84%E9%89%84%E9%89%B1%E3%81%AE%E5%B8%B8%E6%B8%A9%E9%85%B8%E5%8C%96%E6%BA%B6%E8%A7%A3%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E5%AE%9F%E9%A8%93%E5%9C%B0%E7%90%83%E5%8C%96%E5%AD%A6%E7%9A%84%E7%A0%94%E7%A9%B6&rft.jtitle=%E9%89%B1%E7%89%A9%E5%AD%A6%E9%9B%9C%E8%AA%8C&rft.au=%E7%AC%B9%E6%9C%A8%2C+%E5%9C%AD%E5%AD%90&rft.date=1998-05-11&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA%E3%80%80%E6%97%A5%E6%9C%AC%E9%89%B1%E7%89%A9%E7%A7%91%E5%AD%A6%E4%BC%9A&rft.issn=0454-1146&rft.eissn=1883-7018&rft.volume=27&rft.issue=2&rft.spage=93&rft.epage=103&rft_id=info:doi/10.2465%2Fgkk1952.27.93&rft.externalDocID=article_gkk1952_27_2_27_2_93_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0454-1146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0454-1146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0454-1146&client=summon