Developmental Origins of Health and Disease 早産・低出生体重児と糖尿病
Saved in:
| Published in | 日大医学雑誌 Vol. 81; no. 4; pp. 237 - 241 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Japanese |
| Published |
日本大学医学会
01.08.2022
|
| Online Access | Get full text |
| ISSN | 0029-0424 1884-0779 |
| DOI | 10.4264/numa.81.4_237 |
Cover
| Author | 長野, 伸彦 |
|---|---|
| Author_xml | – sequence: 1 fullname: 長野, 伸彦 organization: 日本大学医学部小児科学系小児科学分野准教授 |
| BookMark | eNo9j0tLw0AURgepYKxdus9eEudxMzPZCNKqFQrd6Hq4k7lpE_IomSj477Uobs63OPDBuWaLYRyIsVvBc5Aa7oePHnMrcnBSmQuWCGsh48aUC5ZwLsuMg4Qrtoqx8bywUCoDkLC7DX1SN556Gmbs0v3UHJohpmOdbgm7-ZjiENJNEwkj3bDLGrtIq79dsvfnp7f1NtvtX17Xj7usFUpj5gNq4WWBXJuyslBXQfoaREko0dggdeHrUPBCG4UA4EWAoENNkgxo49WSPfz-tnHGA7nT1PQ4fTmc5qbqyJ1TnRUOzvip_RfVESfXovoGzv1Rdg |
| ContentType | Journal Article |
| Copyright | 2022 日本大学医学会 |
| Copyright_xml | – notice: 2022 日本大学医学会 |
| DOI | 10.4264/numa.81.4_237 |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1884-0779 |
| EndPage | 241 |
| ExternalDocumentID | article_numa_81_4_81_237_article_char_ja |
| GroupedDBID | 5GY ALMA_UNASSIGNED_HOLDINGS F5P JSF RJT |
| ID | FETCH-LOGICAL-j136a-bda61b25a0679c84fcd2bf419ea2a78d265bfd505673a444b1d4d6dfe2e7467b3 |
| ISSN | 0029-0424 |
| IngestDate | Wed Sep 03 06:31:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j136a-bda61b25a0679c84fcd2bf419ea2a78d265bfd505673a444b1d4d6dfe2e7467b3 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/numa/81/4/81_237/_article/-char/ja |
| PageCount | 5 |
| ParticipantIDs | jstage_primary_article_numa_81_4_81_237_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 2022/08/01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022/08/01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 日大医学雑誌 |
| PublicationTitleAlternate | 日大医誌 |
| PublicationYear | 2022 |
| Publisher | 日本大学医学会 |
| Publisher_xml | – name: 日本大学医学会 |
| References | 17) Morrison KM, Ramsingh L, Gunn E, et al. Cardiometabolic health in adults born premature with extremely low birth weight. Pediatrics 2016; 138. 5) Sulgihara S, Sasaki N, Amemiya S, et al. Analysis of weight at birth and at diagnosis of chiidhood-onset type 2 diabetes mel litus in Japan. Pediatr Diabetes 2008; 9: 285―290. 11) Arisaka O, Sairenchi T, Ichikawa G, et al. Increase of body mass index (BMI) from 1.5 to 3 years of age augments the de gree of insulin resistance corresponding to BMI at 12 years of age. J Pediatr Endocrinol Metab 2017; 30: 455―457. 2) Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in hu mans. Proc Natl Acad Sci USA 2008; 105: 17046–17049. 20) Jensen CB, Martin-Gronert MS, Storgaard H, et al. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One 2008; 3: e3738. 1) Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736. 6) Plagernann A, Roepke K, Harder T, et al. Epigenetic malprogramming of the insulin receptor promoter due to develop mental overfeeding. J Perinat Med 2010; 38: 393―400. 15) Maeyama K, Morioka I, Iwatani S, et al. Gestational age-dependency of height and body mass index trajectories during the first 3 years in Japanese small-for-gestational age children. Sci Rep 2016; 6: 38659. 26) Muramatsu-Kato K, Itoh H, Kohmura-Kobayashi Y, et al. Under nourishment in utero primes hepatic steatosis in adult mice offspring on all obesogenic diet; Involvement of endoplasmic reticulum stress. Sci Rep 2015; 5: 16867. 32) Nagano N, Kaneko C, Ohashi S, et al. Non-Obese Type 2 Diabetes with a History of Being an Extremely Preterm Small-for-Gestational-Age Infant without Early Adiposity Rebound. Int J Environ Res Public Health 2022; 19: 8560. 27) Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver dis ease. J Clin Invest 2018; 128: 3692―3703. 33) Katayama D, Nagano N, Shimizu S, et al. A non-obese hyperglycemic mouse model that develops after birth with low birthweight. Biomedicines 2022; 10: 1642. 7) Liu HW, Mahmood S, Srinivasan M, et al. Developmental programming in skeletal muscle in response to overnourish ment in the immediate postnatal life in rats. J Nutr Biochem 2013; 24: 1859―1869. 10) Koyama S, Ichikawa G, Kojima M, et al. Adiposity rebound and the development of metabolic syndrome. Pediatrics 2014; 133: e114―e119. 19) Giannì ML, Roggero P, Piemontese P, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr 2015; 104: e119― e123. 21) Jensen CB, Storgaard H, Madsbad S, et al. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 2007; 92: 1530―1534. 28) Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabe tes 2002; 51: 2944―2950. 23) Suzuki J, Urakami T, Morioka I. Greater insulin resistance in short children born small-for-gestational age than in children with growth hormone deficiency at the early period of growth hormone therapy. Pediatr Int 2021; 63: 1180―1184. 22) Beauchamp B, Ghosh S, Dysart MW, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energet ics and weight loss resistance in mice. Int J Obes (Lond) 2015; 39: 702―711. 9) Yuan X, Tsujimoto K, Hashimoto K, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet- induced obesity in adulthood. Nat Commun 2018; 9: 636. 3) Godfrey KM, Sheppard A, Gluckrnan PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011; 60: 1528―1534. 29) Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664―671. 8) Ehara T, Kamei Y, Yuan X, et al. Ligand-activated PPARα- dependent DNA demethylation regulates the fatty acidβ- oxidation genes in the postnatal liver. Diabetes 2015; 64: 775― 784. 13) Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational- age infants: implications of catch-up fat. Pediatr Res 2015; 77: 136―142. 14) Nagano N, Urakami T, Fuwa K, et al. Association between perinatal status and insulin resistance in neonates in the birth period. Journal of Nihon University Medical Association 2016; 75: 211―218. 18) Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med 2007; 356: 2053―2063. 4) Butruille L, Marousez L, PoLlrpe C, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigen etic regulation of adipose tissue stearoyl-CoA desaturase-l in offspring. Lnt J Obes 2019; 43: 2381―2393. 12) Nagano N, Okada T, Fukamachi R, et al. Insulin-like growth factor-1 and lipoprotein profile in cord blood of preterm small for gestational age infants. J Dev Orig Health Dis 2013; 4: 507―512. 31) Kuwabara R, Urakami T, Yoshida K, et al. Case of type 2 diabetes possibly caused by excessive accumulation of visceral fat in a child born small-for-gestational age. J Diabetes Investig 2020; 11: 1366―1369. 16) Nagano N, Matsumoto M, Awano H, et al. Incidence and neonatal risk factors of short stature and growth hormone treat Developmental Origins of Health and Disease ment in Japanese preterm infants born small for gestational age. Scientific Reports 2019; 9: 12238. 30) Song J, Oh JY, Sung YA, et al. Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 2001; 24: 865―869. 25) Nakano Y. Adult-onset diseases in low birth weight infants: association with adipose tissue maldevelopment. J Atheroscler Thromb 2020; 27: 397―405. 24) Inami I, Okada T, Fuhita H, et al. Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatr Res 2007; 61: 604―606. |
| References_xml | – reference: 4) Butruille L, Marousez L, PoLlrpe C, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigen etic regulation of adipose tissue stearoyl-CoA desaturase-l in offspring. Lnt J Obes 2019; 43: 2381―2393. – reference: 18) Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med 2007; 356: 2053―2063. – reference: 2) Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in hu mans. Proc Natl Acad Sci USA 2008; 105: 17046–17049. – reference: 27) Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver dis ease. J Clin Invest 2018; 128: 3692―3703. – reference: 31) Kuwabara R, Urakami T, Yoshida K, et al. Case of type 2 diabetes possibly caused by excessive accumulation of visceral fat in a child born small-for-gestational age. J Diabetes Investig 2020; 11: 1366―1369. – reference: 33) Katayama D, Nagano N, Shimizu S, et al. A non-obese hyperglycemic mouse model that develops after birth with low birthweight. Biomedicines 2022; 10: 1642. – reference: 9) Yuan X, Tsujimoto K, Hashimoto K, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet- induced obesity in adulthood. Nat Commun 2018; 9: 636. – reference: 30) Song J, Oh JY, Sung YA, et al. Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 2001; 24: 865―869. – reference: 29) Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664―671. – reference: 11) Arisaka O, Sairenchi T, Ichikawa G, et al. Increase of body mass index (BMI) from 1.5 to 3 years of age augments the de gree of insulin resistance corresponding to BMI at 12 years of age. J Pediatr Endocrinol Metab 2017; 30: 455―457. – reference: 15) Maeyama K, Morioka I, Iwatani S, et al. Gestational age-dependency of height and body mass index trajectories during the first 3 years in Japanese small-for-gestational age children. Sci Rep 2016; 6: 38659. – reference: 19) Giannì ML, Roggero P, Piemontese P, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr 2015; 104: e119― e123. – reference: 23) Suzuki J, Urakami T, Morioka I. Greater insulin resistance in short children born small-for-gestational age than in children with growth hormone deficiency at the early period of growth hormone therapy. Pediatr Int 2021; 63: 1180―1184. – reference: 8) Ehara T, Kamei Y, Yuan X, et al. Ligand-activated PPARα- dependent DNA demethylation regulates the fatty acidβ- oxidation genes in the postnatal liver. Diabetes 2015; 64: 775― 784. – reference: 12) Nagano N, Okada T, Fukamachi R, et al. Insulin-like growth factor-1 and lipoprotein profile in cord blood of preterm small for gestational age infants. J Dev Orig Health Dis 2013; 4: 507―512. – reference: 13) Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational- age infants: implications of catch-up fat. Pediatr Res 2015; 77: 136―142. – reference: 14) Nagano N, Urakami T, Fuwa K, et al. Association between perinatal status and insulin resistance in neonates in the birth period. Journal of Nihon University Medical Association 2016; 75: 211―218. – reference: 32) Nagano N, Kaneko C, Ohashi S, et al. Non-Obese Type 2 Diabetes with a History of Being an Extremely Preterm Small-for-Gestational-Age Infant without Early Adiposity Rebound. Int J Environ Res Public Health 2022; 19: 8560. – reference: 16) Nagano N, Matsumoto M, Awano H, et al. Incidence and neonatal risk factors of short stature and growth hormone treat Developmental Origins of Health and Disease ment in Japanese preterm infants born small for gestational age. Scientific Reports 2019; 9: 12238. – reference: 28) Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabe tes 2002; 51: 2944―2950. – reference: 5) Sulgihara S, Sasaki N, Amemiya S, et al. Analysis of weight at birth and at diagnosis of chiidhood-onset type 2 diabetes mel litus in Japan. Pediatr Diabetes 2008; 9: 285―290. – reference: 20) Jensen CB, Martin-Gronert MS, Storgaard H, et al. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One 2008; 3: e3738. – reference: 25) Nakano Y. Adult-onset diseases in low birth weight infants: association with adipose tissue maldevelopment. J Atheroscler Thromb 2020; 27: 397―405. – reference: 7) Liu HW, Mahmood S, Srinivasan M, et al. Developmental programming in skeletal muscle in response to overnourish ment in the immediate postnatal life in rats. J Nutr Biochem 2013; 24: 1859―1869. – reference: 10) Koyama S, Ichikawa G, Kojima M, et al. Adiposity rebound and the development of metabolic syndrome. Pediatrics 2014; 133: e114―e119. – reference: 22) Beauchamp B, Ghosh S, Dysart MW, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energet ics and weight loss resistance in mice. Int J Obes (Lond) 2015; 39: 702―711. – reference: 6) Plagernann A, Roepke K, Harder T, et al. Epigenetic malprogramming of the insulin receptor promoter due to develop mental overfeeding. J Perinat Med 2010; 38: 393―400. – reference: 26) Muramatsu-Kato K, Itoh H, Kohmura-Kobayashi Y, et al. Under nourishment in utero primes hepatic steatosis in adult mice offspring on all obesogenic diet; Involvement of endoplasmic reticulum stress. Sci Rep 2015; 5: 16867. – reference: 17) Morrison KM, Ramsingh L, Gunn E, et al. Cardiometabolic health in adults born premature with extremely low birth weight. Pediatrics 2016; 138. – reference: 3) Godfrey KM, Sheppard A, Gluckrnan PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011; 60: 1528―1534. – reference: 21) Jensen CB, Storgaard H, Madsbad S, et al. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 2007; 92: 1530―1534. – reference: 1) Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736. – reference: 24) Inami I, Okada T, Fuhita H, et al. Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatr Res 2007; 61: 604―606. |
| SSID | ssib058493744 ssib004298531 ssib001535899 ssib007484389 ssj0000389138 ssib004001855 |
| Score | 2.314138 |
| SourceID | jstage |
| SourceType | Publisher |
| StartPage | 237 |
| Subtitle | 早産・低出生体重児と糖尿病 |
| Title | Developmental Origins of Health and Disease |
| URI | https://www.jstage.jst.go.jp/article/numa/81/4/81_237/_article/-char/ja |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 日大医学雑誌, 2022/08/01, Vol.81(4), pp.237-241 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1884-0779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib007484389 issn: 0029-0424 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWRUJcEE_xVg74hLJsHMd2js4SVIEAIbVSb5Edx4eVaBHavfAL-rM7YztdL3AoPcSy7M2s7ZlMPsfzIOStqYScXGPKcfKq5MZNoAdrVnpZGbNaOXQdQGuLr-L4lH86a84Wi8vMamm3tcvx9z_9Sm7DVWgDvqKX7H9w9pooNEAd-AslcBjKG_E4s_iBlf4WclwF04zkXBTMjLMTmARCaS9oK6luaN9QzamWWFFr2nWh5QPVgvYtbTvaVrRXVGvonVkTehraSawoSVWwp6Q9px1QUEihQwr59wTYis7WbFECsiFAZU31-mAsaQh_Dyr8SatzXcvw2CV6SC-nqF6V4uVKxvQxs_6NKVuSnPFcmcZwMOm9zGKArD9VPiI6DCG7-2GWqlry4fqugyjaiUeYZ8UMqho4FvDTYe5AJ7dhA0j7DoP3AyYB-fw9P0-sm_x8lGMywybfiLaAe_aaEiO01vs4_oDyAAYmIBUwQjgeVrP9ES5TDACL03l_MBmARhvYKMxGhgH3nDwg99OGpdBxAg_JYmMekbtfkknGY_LuQAiLJITFhS-iEBYghEUSwifk9GN_sj4uUwaOclPVwpTWGVFZ1hj83Dgq7kfHrOdVOxlmpHJMNNY7BNGyNpxzWznuhPMTmzCNja2fkqPzi_PpGSmsH4Vr1egtLI10oBVqx-ACMhiQyTwnMk5z-BnDrAw3ZdmLW9_5ktzbPwGvyNH21256DRhza98E9l8BPg9kaA |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Origins+of+Health+and+Disease&rft.jtitle=%E6%97%A5%E5%A4%A7%E5%8C%BB%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E9%95%B7%E9%87%8E%2C+%E4%BC%B8%E5%BD%A6&rft.date=2022-08-01&rft.pub=%E6%97%A5%E6%9C%AC%E5%A4%A7%E5%AD%A6%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0029-0424&rft.eissn=1884-0779&rft.volume=81&rft.issue=4&rft.spage=237&rft.epage=241&rft_id=info:doi/10.4264%2Fnuma.81.4_237&rft.externalDocID=article_numa_81_4_81_237_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-0424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-0424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-0424&client=summon |