Developmental Origins of Health and Disease 早産・低出生体重児と糖尿病

Saved in:
Bibliographic Details
Published in日大医学雑誌 Vol. 81; no. 4; pp. 237 - 241
Main Author 長野, 伸彦
Format Journal Article
LanguageJapanese
Published 日本大学医学会 01.08.2022
Online AccessGet full text
ISSN0029-0424
1884-0779
DOI10.4264/numa.81.4_237

Cover

Author 長野, 伸彦
Author_xml – sequence: 1
  fullname: 長野, 伸彦
  organization: 日本大学医学部小児科学系小児科学分野准教授
BookMark eNo9j0tLw0AURgepYKxdus9eEudxMzPZCNKqFQrd6Hq4k7lpE_IomSj477Uobs63OPDBuWaLYRyIsVvBc5Aa7oePHnMrcnBSmQuWCGsh48aUC5ZwLsuMg4Qrtoqx8bywUCoDkLC7DX1SN556Gmbs0v3UHJohpmOdbgm7-ZjiENJNEwkj3bDLGrtIq79dsvfnp7f1NtvtX17Xj7usFUpj5gNq4WWBXJuyslBXQfoaREko0dggdeHrUPBCG4UA4EWAoENNkgxo49WSPfz-tnHGA7nT1PQ4fTmc5qbqyJ1TnRUOzvip_RfVESfXovoGzv1Rdg
ContentType Journal Article
Copyright 2022 日本大学医学会
Copyright_xml – notice: 2022 日本大学医学会
DOI 10.4264/numa.81.4_237
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-0779
EndPage 241
ExternalDocumentID article_numa_81_4_81_237_article_char_ja
GroupedDBID 5GY
ALMA_UNASSIGNED_HOLDINGS
F5P
JSF
RJT
ID FETCH-LOGICAL-j136a-bda61b25a0679c84fcd2bf419ea2a78d265bfd505673a444b1d4d6dfe2e7467b3
ISSN 0029-0424
IngestDate Wed Sep 03 06:31:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j136a-bda61b25a0679c84fcd2bf419ea2a78d265bfd505673a444b1d4d6dfe2e7467b3
OpenAccessLink https://www.jstage.jst.go.jp/article/numa/81/4/81_237/_article/-char/ja
PageCount 5
ParticipantIDs jstage_primary_article_numa_81_4_81_237_article_char_ja
PublicationCentury 2000
PublicationDate 2022/08/01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022/08/01
  day: 01
PublicationDecade 2020
PublicationTitle 日大医学雑誌
PublicationTitleAlternate 日大医誌
PublicationYear 2022
Publisher 日本大学医学会
Publisher_xml – name: 日本大学医学会
References 17) Morrison KM, Ramsingh L, Gunn E, et al. Cardiometabolic health in adults born premature with extremely low birth weight. Pediatrics 2016; 138.
5) Sulgihara S, Sasaki N, Amemiya S, et al. Analysis of weight at birth and at diagnosis of chiidhood-onset type 2 diabetes mel litus in Japan. Pediatr Diabetes 2008; 9: 285―290.
11) Arisaka O, Sairenchi T, Ichikawa G, et al. Increase of body mass index (BMI) from 1.5 to 3 years of age augments the de gree of insulin resistance corresponding to BMI at 12 years of age. J Pediatr Endocrinol Metab 2017; 30: 455―457.
2) Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in hu mans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.
20) Jensen CB, Martin-Gronert MS, Storgaard H, et al. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One 2008; 3: e3738.
1) Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736.
6) Plagernann A, Roepke K, Harder T, et al. Epigenetic malprogramming of the insulin receptor promoter due to develop mental overfeeding. J Perinat Med 2010; 38: 393―400.
15) Maeyama K, Morioka I, Iwatani S, et al. Gestational age-dependency of height and body mass index trajectories during the first 3 years in Japanese small-for-gestational age children. Sci Rep 2016; 6: 38659.
26) Muramatsu-Kato K, Itoh H, Kohmura-Kobayashi Y, et al. Under nourishment in utero primes hepatic steatosis in adult mice offspring on all obesogenic diet; Involvement of endoplasmic reticulum stress. Sci Rep 2015; 5: 16867.
32) Nagano N, Kaneko C, Ohashi S, et al. Non-Obese Type 2 Diabetes with a History of Being an Extremely Preterm Small-for-Gestational-Age Infant without Early Adiposity Rebound. Int J Environ Res Public Health 2022; 19: 8560.
27) Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver dis ease. J Clin Invest 2018; 128: 3692―3703.
33) Katayama D, Nagano N, Shimizu S, et al. A non-obese hyperglycemic mouse model that develops after birth with low birthweight. Biomedicines 2022; 10: 1642.
7) Liu HW, Mahmood S, Srinivasan M, et al. Developmental programming in skeletal muscle in response to overnourish ment in the immediate postnatal life in rats. J Nutr Biochem 2013; 24: 1859―1869.
10) Koyama S, Ichikawa G, Kojima M, et al. Adiposity rebound and the development of metabolic syndrome. Pediatrics 2014; 133: e114―e119.
19) Giannì ML, Roggero P, Piemontese P, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr 2015; 104: e119― e123.
21) Jensen CB, Storgaard H, Madsbad S, et al. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 2007; 92: 1530―1534.
28) Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabe tes 2002; 51: 2944―2950.
23) Suzuki J, Urakami T, Morioka I. Greater insulin resistance in short children born small-for-gestational age than in children with growth hormone deficiency at the early period of growth hormone therapy. Pediatr Int 2021; 63: 1180―1184.
22) Beauchamp B, Ghosh S, Dysart MW, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energet ics and weight loss resistance in mice. Int J Obes (Lond) 2015; 39: 702―711.
9) Yuan X, Tsujimoto K, Hashimoto K, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet- induced obesity in adulthood. Nat Commun 2018; 9: 636.
3) Godfrey KM, Sheppard A, Gluckrnan PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011; 60: 1528―1534.
29) Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664―671.
8) Ehara T, Kamei Y, Yuan X, et al. Ligand-activated PPARα- dependent DNA demethylation regulates the fatty acidβ- oxidation genes in the postnatal liver. Diabetes 2015; 64: 775― 784.
13) Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational- age infants: implications of catch-up fat. Pediatr Res 2015; 77: 136―142.
14) Nagano N, Urakami T, Fuwa K, et al. Association between perinatal status and insulin resistance in neonates in the birth period. Journal of Nihon University Medical Association 2016; 75: 211―218.
18) Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med 2007; 356: 2053―2063.
4) Butruille L, Marousez L, PoLlrpe C, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigen etic regulation of adipose tissue stearoyl-CoA desaturase-l in offspring. Lnt J Obes 2019; 43: 2381―2393.
12) Nagano N, Okada T, Fukamachi R, et al. Insulin-like growth factor-1 and lipoprotein profile in cord blood of preterm small for gestational age infants. J Dev Orig Health Dis 2013; 4: 507―512.
31) Kuwabara R, Urakami T, Yoshida K, et al. Case of type 2 diabetes possibly caused by excessive accumulation of visceral fat in a child born small-for-gestational age. J Diabetes Investig 2020; 11: 1366―1369.
16) Nagano N, Matsumoto M, Awano H, et al. Incidence and neonatal risk factors of short stature and growth hormone treat Developmental Origins of Health and Disease ment in Japanese preterm infants born small for gestational age. Scientific Reports 2019; 9: 12238.
30) Song J, Oh JY, Sung YA, et al. Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 2001; 24: 865―869.
25) Nakano Y. Adult-onset diseases in low birth weight infants: association with adipose tissue maldevelopment. J Atheroscler Thromb 2020; 27: 397―405.
24) Inami I, Okada T, Fuhita H, et al. Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatr Res 2007; 61: 604―606.
References_xml – reference: 4) Butruille L, Marousez L, PoLlrpe C, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigen etic regulation of adipose tissue stearoyl-CoA desaturase-l in offspring. Lnt J Obes 2019; 43: 2381―2393.
– reference: 18) Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med 2007; 356: 2053―2063.
– reference: 2) Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in hu mans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.
– reference: 27) Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver dis ease. J Clin Invest 2018; 128: 3692―3703.
– reference: 31) Kuwabara R, Urakami T, Yoshida K, et al. Case of type 2 diabetes possibly caused by excessive accumulation of visceral fat in a child born small-for-gestational age. J Diabetes Investig 2020; 11: 1366―1369.
– reference: 33) Katayama D, Nagano N, Shimizu S, et al. A non-obese hyperglycemic mouse model that develops after birth with low birthweight. Biomedicines 2022; 10: 1642.
– reference: 9) Yuan X, Tsujimoto K, Hashimoto K, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet- induced obesity in adulthood. Nat Commun 2018; 9: 636.
– reference: 30) Song J, Oh JY, Sung YA, et al. Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 2001; 24: 865―869.
– reference: 29) Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664―671.
– reference: 11) Arisaka O, Sairenchi T, Ichikawa G, et al. Increase of body mass index (BMI) from 1.5 to 3 years of age augments the de gree of insulin resistance corresponding to BMI at 12 years of age. J Pediatr Endocrinol Metab 2017; 30: 455―457.
– reference: 15) Maeyama K, Morioka I, Iwatani S, et al. Gestational age-dependency of height and body mass index trajectories during the first 3 years in Japanese small-for-gestational age children. Sci Rep 2016; 6: 38659.
– reference: 19) Giannì ML, Roggero P, Piemontese P, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr 2015; 104: e119― e123.
– reference: 23) Suzuki J, Urakami T, Morioka I. Greater insulin resistance in short children born small-for-gestational age than in children with growth hormone deficiency at the early period of growth hormone therapy. Pediatr Int 2021; 63: 1180―1184.
– reference: 8) Ehara T, Kamei Y, Yuan X, et al. Ligand-activated PPARα- dependent DNA demethylation regulates the fatty acidβ- oxidation genes in the postnatal liver. Diabetes 2015; 64: 775― 784.
– reference: 12) Nagano N, Okada T, Fukamachi R, et al. Insulin-like growth factor-1 and lipoprotein profile in cord blood of preterm small for gestational age infants. J Dev Orig Health Dis 2013; 4: 507―512.
– reference: 13) Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational- age infants: implications of catch-up fat. Pediatr Res 2015; 77: 136―142.
– reference: 14) Nagano N, Urakami T, Fuwa K, et al. Association between perinatal status and insulin resistance in neonates in the birth period. Journal of Nihon University Medical Association 2016; 75: 211―218.
– reference: 32) Nagano N, Kaneko C, Ohashi S, et al. Non-Obese Type 2 Diabetes with a History of Being an Extremely Preterm Small-for-Gestational-Age Infant without Early Adiposity Rebound. Int J Environ Res Public Health 2022; 19: 8560.
– reference: 16) Nagano N, Matsumoto M, Awano H, et al. Incidence and neonatal risk factors of short stature and growth hormone treat Developmental Origins of Health and Disease ment in Japanese preterm infants born small for gestational age. Scientific Reports 2019; 9: 12238.
– reference: 28) Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabe tes 2002; 51: 2944―2950.
– reference: 5) Sulgihara S, Sasaki N, Amemiya S, et al. Analysis of weight at birth and at diagnosis of chiidhood-onset type 2 diabetes mel litus in Japan. Pediatr Diabetes 2008; 9: 285―290.
– reference: 20) Jensen CB, Martin-Gronert MS, Storgaard H, et al. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One 2008; 3: e3738.
– reference: 25) Nakano Y. Adult-onset diseases in low birth weight infants: association with adipose tissue maldevelopment. J Atheroscler Thromb 2020; 27: 397―405.
– reference: 7) Liu HW, Mahmood S, Srinivasan M, et al. Developmental programming in skeletal muscle in response to overnourish ment in the immediate postnatal life in rats. J Nutr Biochem 2013; 24: 1859―1869.
– reference: 10) Koyama S, Ichikawa G, Kojima M, et al. Adiposity rebound and the development of metabolic syndrome. Pediatrics 2014; 133: e114―e119.
– reference: 22) Beauchamp B, Ghosh S, Dysart MW, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energet ics and weight loss resistance in mice. Int J Obes (Lond) 2015; 39: 702―711.
– reference: 6) Plagernann A, Roepke K, Harder T, et al. Epigenetic malprogramming of the insulin receptor promoter due to develop mental overfeeding. J Perinat Med 2010; 38: 393―400.
– reference: 26) Muramatsu-Kato K, Itoh H, Kohmura-Kobayashi Y, et al. Under nourishment in utero primes hepatic steatosis in adult mice offspring on all obesogenic diet; Involvement of endoplasmic reticulum stress. Sci Rep 2015; 5: 16867.
– reference: 17) Morrison KM, Ramsingh L, Gunn E, et al. Cardiometabolic health in adults born premature with extremely low birth weight. Pediatrics 2016; 138.
– reference: 3) Godfrey KM, Sheppard A, Gluckrnan PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011; 60: 1528―1534.
– reference: 21) Jensen CB, Storgaard H, Madsbad S, et al. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 2007; 92: 1530―1534.
– reference: 1) Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736.
– reference: 24) Inami I, Okada T, Fuhita H, et al. Impact of serum adiponectin concentration on birth size and early postnatal growth. Pediatr Res 2007; 61: 604―606.
SSID ssib058493744
ssib004298531
ssib001535899
ssib007484389
ssj0000389138
ssib004001855
Score 2.314138
SourceID jstage
SourceType Publisher
StartPage 237
Subtitle 早産・低出生体重児と糖尿病
Title Developmental Origins of Health and Disease
URI https://www.jstage.jst.go.jp/article/numa/81/4/81_237/_article/-char/ja
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日大医学雑誌, 2022/08/01, Vol.81(4), pp.237-241
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1884-0779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib007484389
  issn: 0029-0424
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWRUJcEE_xVg74hLJsHMd2js4SVIEAIbVSb5Edx4eVaBHavfAL-rM7YztdL3AoPcSy7M2s7ZlMPsfzIOStqYScXGPKcfKq5MZNoAdrVnpZGbNaOXQdQGuLr-L4lH86a84Wi8vMamm3tcvx9z_9Sm7DVWgDvqKX7H9w9pooNEAd-AslcBjKG_E4s_iBlf4WclwF04zkXBTMjLMTmARCaS9oK6luaN9QzamWWFFr2nWh5QPVgvYtbTvaVrRXVGvonVkTehraSawoSVWwp6Q9px1QUEihQwr59wTYis7WbFECsiFAZU31-mAsaQh_Dyr8SatzXcvw2CV6SC-nqF6V4uVKxvQxs_6NKVuSnPFcmcZwMOm9zGKArD9VPiI6DCG7-2GWqlry4fqugyjaiUeYZ8UMqho4FvDTYe5AJ7dhA0j7DoP3AyYB-fw9P0-sm_x8lGMywybfiLaAe_aaEiO01vs4_oDyAAYmIBUwQjgeVrP9ES5TDACL03l_MBmARhvYKMxGhgH3nDwg99OGpdBxAg_JYmMekbtfkknGY_LuQAiLJITFhS-iEBYghEUSwifk9GN_sj4uUwaOclPVwpTWGVFZ1hj83Dgq7kfHrOdVOxlmpHJMNNY7BNGyNpxzWznuhPMTmzCNja2fkqPzi_PpGSmsH4Vr1egtLI10oBVqx-ACMhiQyTwnMk5z-BnDrAw3ZdmLW9_5ktzbPwGvyNH21256DRhza98E9l8BPg9kaA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Origins+of+Health+and+Disease&rft.jtitle=%E6%97%A5%E5%A4%A7%E5%8C%BB%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E9%95%B7%E9%87%8E%2C+%E4%BC%B8%E5%BD%A6&rft.date=2022-08-01&rft.pub=%E6%97%A5%E6%9C%AC%E5%A4%A7%E5%AD%A6%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0029-0424&rft.eissn=1884-0779&rft.volume=81&rft.issue=4&rft.spage=237&rft.epage=241&rft_id=info:doi/10.4264%2Fnuma.81.4_237&rft.externalDocID=article_numa_81_4_81_237_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-0424&client=summon