単体建物周辺における高温排気ガスの拡散を対象としたCFD解析
Saved in:
| Published in | 生産研究 Vol. 73; no. 1; pp. 37 - 46 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
東京大学生産技術研究所
01.01.2021
|
| Online Access | Get full text |
| ISSN | 0037-105X 1881-2058 |
| DOI | 10.11188/seisankenkyu.73.37 |
Cover
| Author | 大岡, 龍三 林, 超 佐藤, 大樹 新井, 舞子 菊本, 英紀 |
|---|---|
| Author_xml | – sequence: 1 fullname: 菊本, 英紀 organization: 東京大学生産技術研究所 人間・社会系部門 – sequence: 1 fullname: 林, 超 organization: 東京大学大学院 工学系研究科 – sequence: 1 fullname: 大岡, 龍三 organization: 東京大学生産技術研究所 人間・社会系部門 – sequence: 1 fullname: 新井, 舞子 organization: 大成建設株式会社技術センター – sequence: 1 fullname: 佐藤, 大樹 organization: 大成建設株式会社技術センター |
| BookMark | eNpNkE9LAkEchocoSK1P0GdYm9-MuzMdw7QCoYtBt2XUsVxti107eJy9lRRphJ4K8ZBi9OdWRn6ZaTf7FhVFdHnewwPv4YmjWffAlQgtAU4CAOfLvqz4wq1Kt9o4SjKapGwGxb4EGASbfBbFMKbMAGzuzKO47zsYm5hwHkP58LT79noRvozfj4dhazCdjLUaaXWiVUsHzY9RN3oaRmft6KGjg1sdPGt1FzV70WVfB-3wfjJ97Gk10Kqj1XU6uza96UdX5wtorixqvlz83QTazmby6Q0jt7W-mV7NGQ4QLowyCAkYE8HBkhizEielguQEC-AUQBIrZRHgZcFNs7DCRBFLCZbJBbVSlBGTJlDm59fx62JX2odeZV94DVt49UqxJu3_VWxGbfgGZX--uCc82xH0E_Tdf0Q |
| ContentType | Journal Article |
| Copyright | 2021 東京大学生産技術研究所 |
| Copyright_xml | – notice: 2021 東京大学生産技術研究所 |
| DOI | 10.11188/seisankenkyu.73.37 |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1881-2058 |
| EndPage | 46 |
| ExternalDocumentID | article_seisankenkyu_73_1_73_37_article_char_ja |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT |
| ID | FETCH-LOGICAL-j128a-f1ae1002a816e007d82dbe820a18311e2646218fa855b97ac0ee1658a36437253 |
| ISSN | 0037-105X |
| IngestDate | Wed Sep 03 06:31:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j128a-f1ae1002a816e007d82dbe820a18311e2646218fa855b97ac0ee1658a36437253 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/seisankenkyu/73/1/73_37/_article/-char/ja |
| PageCount | 10 |
| ParticipantIDs | jstage_primary_article_seisankenkyu_73_1_73_37_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 2021/01/01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021/01/01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 生産研究 |
| PublicationTitleAlternate | 生産研究 |
| PublicationYear | 2021 |
| Publisher | 東京大学生産技術研究所 |
| Publisher_xml | – name: 東京大学生産技術研究所 |
| References | 9) M. Lateb, C. Masson, T. Stathopoulos, C. Bédard, Effect of stack height and exhaust velocity on pollutant dispersion in the wake of a building, Atmos. Environ. 45 (2011) 5150–5163. https://doi.org/10.1016/j.atmosenv.2011.06.040. 22) Y. Tominaga, T. Stathopoulos, CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS, J. Wind Eng. Ind. Aerodyn. 99 (2011) 340–348. https://doi.org/10.1016/j.jweia.2010.12.005. 43) Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058. 20) Y. Tominaga, S. Murakami, A. Mochida, CFD prediction of gaseous diffusion around a cubic model using a dynamic mixed SGS model based on composite grid technique, J. Wind Eng. Ind. Aerodyn. 67–68 (1997) 827–841. https://doi.org/10.1016/S0167-6105(97)00122-0. 16) C. Lin, R. Ooka, H. Kikumoto, T. Sato, M. Arai, Wind tunnel experiment on high-buoyancy gas dispersion around isolated cubic building, J. Wind Eng. Ind. Aerodyn. 202 (2020) 104226. https://doi.org/10.1016/j.jweia.2020.104226. 19) S. Branford, O. Coceal, T.G. Thomas, S.E. Belcher, Dispersion of a Point-Source Release of a Passive Scalar Through an Urban-Like Array for Different Wind Directions, Boundary-Layer Meteorol. 139 (2011) 367–394. https://doi.org/10.1007/s10546-011-9589-1. 32) Y. Dai, C.M. Mak, Z. Ai, J. Hang, Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays, Build. Environ. 137 (2018) 90–107. https://doi.org/10.1016/j.buildenv.2018.04.005. 40) L.H. Hu, Y. Xu, W. Zhu, L. Wu, F. Tang, K.H. Lu, Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon, J. Hazard. Mater. 192 (2011) 940–948. https://doi.org/10.1016/j.jhazmat.2010.12.063. 54) Y. Zhou, M. Wang, M. Wang, Y. Wang, Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building, Build. Environ. 144 (2018) 349–356. https://doi.org/10.1016/j.buildenv.2018.08.043. 11) B. Hajra, T. Stathopoulos, A. Bahloul, A wind tunnel study of the effects of adjacent buildings on near-field pollutant dispersion from rooftop emissions in an urban environment, J. Wind Eng. Ind. Aerodyn. 119 (2013) 133–145. https://doi.org/10.1016/j.jweia.2013.05.003. 35) M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Assessment of near-field pollutant dispersion: Effect of upstream buildings, J. Wind Eng. Ind. Aerodyn. 104–106 (2012) 509–515. https://doi.org/10.1016/j.jweia.2012.02.019. 28) Y. Tominaga, T. Stathopoulos, CFD Modeling of Pollution Dispersion in Building Array: Evaluation of turbulent scalar flux modeling in RANS model using LES results, J. Wind Eng. Ind. Aerodyn. 104–106 (2012) 484–491. https://doi.org/10.1016/j.jweia.2012.02.004. 56) P.-Y. Cui, Y. Zhang, J.-H. Zhang, Y.-D. Huang, W.-Q. Tao, Application and numerical error analysis of multiscale method for air flow, heat and pollutant transfer through different scale urban areas, Build. Environ. 149 (2019) 349–365. https://doi.org/10.1016/j.buildenv.2018.12.029. 36) B. Blocken, T. Stathopoulos, P. Saathoff, X. Wang, Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1817–1831. https://doi.org/10.1016/j.jweia.2008.02.049. 41) Z. Tong, K.M. Zhang, The near-source impacts of diesel backup generators in urban environments, Atmos. Environ. 109 (2015) 262–271. https://doi.org/10.1016/j.atmosenv.2015.03.020. 34) M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations, J. Wind Eng. Ind. Aerodyn. 99 (2011) 330–339. https://doi.org/10.1016/j.jweia.2011.01.003. 52) N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations, Int. J. Heat Fluid Flow. 27 (2006) 585–593. https://doi.org/10.1016/j.ijheatfluidflow.2006.02.006. 7) A.H. Huber, W.H. Snyder, Wind tunnel investigation of the effects of a rectangular-shaped building on dispersion of effluents from short adjacent stacks, Atmos. Environ. 16 (1982) 2837–2848. https://doi.org/10.1016/0004-6981(82)90034-8. 12) M.F. Yassin, A wind tunnel study on the effect of thermal stability on flow and dispersion of rooftop stack emissions in the near wake of a building, Atmos. Environ. 65 (2013) 89–100. https://doi.org/10.1016/j.atmosenv.2012.10.013. 24) P. Gousseau, B. Blocken, T. Stathopoulos, G.J.F. van Heijst, CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal, Atmos. Environ. 45 (2011) 428–438. https://doi.org/10.1016/j.atmosenv.2010.09.065. 23) S.M. Salim, R. Buccolieri, A. Chan, S. Di Sabatino, Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES, J. Wind Eng. Ind. Aerodyn. 99 (2011) 103–113. https://doi.org/10.1016/j.jweia.2010.12.002. 47) F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598–1605. https://doi.org/10.2514/3.12149. 6) W.-W. Li, R.N. Meroney, Gas dispersion near a cubical model building. Part II. Concentration fluctuation measurements, J. Wind Eng. Ind. Aerodyn. 12 (1983) 35–47. https://doi.org/10.1016/0167-6105(83)90079-X. 30) F. Bazdidi-Tehrani, P. Gholamalipour, M. Kiamansouri, M. Jadidi, Large eddy simulation of thermal stratification effect on convective and turbulent diffusion fluxes concerning gaseous pollutant dispersion around a high-rise model building, J. Build. Perform. Simul. 12 (2019) 97–116. https://doi.org/10.1080/19401493.2018.1486886. 15) Y. Tominaga, T. Stathopoulos, Ten questions concerning modeling of near-field pollutant dispersion in the built environment, Build. Environ. 105 (2016) 390–402. https://doi.org/10.1016/j.buildenv.2016.06.027. 21) Y. Tominaga, T. Stathopoulos, Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES, Build. Environ. 45 (2010) 2231–2239. https://doi.org/10.1016/j.buildenv.2010.04.004. 26) P. Gousseau, B. Blocken, G.J.F. van Heijst, CFD simulation of pollutant dispersion around isolated buildings: On the role of convective and turbulent mass fluxes in the prediction accuracy, J. Hazard. Mater. 194 (2011) 422–434. https://doi.org/10.1016/j.jhazmat.2011.08.008. 17) Y. Tominaga, T. Stathopoulos, CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques, Atmos. Environ. 79 (2013) 716–730. https://doi.org/10.1016/j.atmosenv.2013.07.028. 10) B. Hajra, T. Stathopoulos, A wind tunnel study of the effect of downstream buildings on near-field pollutant dispersion, Build. Environ. 52 (2012) 19–31. https://doi.org/10.1016/j.buildenv.2011.12.021. 44) T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids. 24 (1995) 227–238. https://doi.org/10.1016/0045-7930(94)00032-T. 53) Y. Tominaga, T. Stathopoulos, Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmos. Environ. 41 (2007) 8091–8099. https://doi.org/10.1016/j.atmosenv.2007.06.054. 4) E. Canepa, An overview about the study of downwash effects on dispersion of airborne pollutants, Environ. Model. Softw. 19 (2004) 1077–1087. https://doi.org/10.1016/j.envsoft.2003.11.011. 14) P. Salizzoni, R. Van Liefferinge, L. Soulhac, P. Mejean, R.J. Perkins, Influence of wall roughness on the dispersion of a passive scalar in a turbulent boundary layer, Atmos. Environ. 43 (2009) 734–748. https://doi.org/10.1016/j.atmosenv.2008.07.057. 39) H.A. Olvera, A.R. Choudhuri, W.W. Li, Effects of plume buoyancy and momentum on the near-wake flow structure and dispersion behind an idealized building, J. Wind Eng. Ind. Aerodyn. 96 (2008) 209–228. https://doi.org/10.1016/j.jweia.2007.04.004. 13) A. Gupta, T. Stathopoulos, P. Saathoff, Wind tunnel investigation of the downwash effect of a rooftop structure on plume dispersion, Atmos. Environ. 46 (2012) 496–507. https://doi.org/10.1016/j.atmosenv.2011.08.039. 51) H. Foroutan, W. Tang, D.K. Heist, S.G. Perry, L.H. Brouwer, E.M. Monbureau, Numerical analysis of pollutant dispersion around elongated buildings: An embedded large eddy simulation approach, Atmos. Environ. 187 (2018) 117–130. https://doi.org/10.1016/j.atmosenv.2018.05.053. 55) H. Olvera, A. Choudhuri, Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres, Int. J. Hydrogen Energy. 31 (2006) 2356–2369. https://doi.org/10.1016/j.ijhydene.2006.02.022. 50) E.M. Monbureau, D.K. Heist, S.G. Perry, L.H. Brouwer, H. Foroutan, W. Tang, Enhancements to AERMOD’s building downwash algorithms based on wind-tunnel and Embedded-LES modeling, Atmos. Environ. 179 (2018) 321–330. https://doi.org/10.1016/j.atmosenv.2018.02.022. 45) W. Szablewski, B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence. 169 S. m. Abb. London/New York 1972. Academic Press. Preis geb. $ 7.50, ZAMM - Zeitschrift Für Angew. Math. Und Mech. 53 (1973) 424–424. https://doi.org/10.1002/zamm.19730530619. 33) M. Lateb, C. Masson, T. Stathopoulos, C. Bédard, Numerical simulation of pollutant dispersion around a building complex, Build. Environ. 45 (2010) 1788–1798. https://doi.org/10.1016/j.buildenv.2010.02.006. 1) G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’haeseleer, Distributed generation: Definition, benefits and issues, Energy Policy. 33 (2005) 787–798. https://doi.org/10.1016/j.enpol.2003.10.004. 29) W.C. Cheng, C.-H. Liu, Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities, J. Wind Eng. I |
| References_xml | – reference: 48) F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbul. Combust. 62 (1999) 183–200. https://doi.org/10.1023/A:1009995426001. – reference: 22) Y. Tominaga, T. Stathopoulos, CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS, J. Wind Eng. Ind. Aerodyn. 99 (2011) 340–348. https://doi.org/10.1016/j.jweia.2010.12.005. – reference: 54) Y. Zhou, M. Wang, M. Wang, Y. Wang, Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building, Build. Environ. 144 (2018) 349–356. https://doi.org/10.1016/j.buildenv.2018.08.043. – reference: 15) Y. Tominaga, T. Stathopoulos, Ten questions concerning modeling of near-field pollutant dispersion in the built environment, Build. Environ. 105 (2016) 390–402. https://doi.org/10.1016/j.buildenv.2016.06.027. – reference: 39) H.A. Olvera, A.R. Choudhuri, W.W. Li, Effects of plume buoyancy and momentum on the near-wake flow structure and dispersion behind an idealized building, J. Wind Eng. Ind. Aerodyn. 96 (2008) 209–228. https://doi.org/10.1016/j.jweia.2007.04.004. – reference: 3) Olaguer, Knipping, Shaw, Ravindran, Microscale air quality impacts of distributed power generation facilities, J. Air Waste Manage. Assoc. 66 (2016) 795–806. https://doi.org/10.1080/10962247.2016.1184194. – reference: 19) S. Branford, O. Coceal, T.G. Thomas, S.E. Belcher, Dispersion of a Point-Source Release of a Passive Scalar Through an Urban-Like Array for Different Wind Directions, Boundary-Layer Meteorol. 139 (2011) 367–394. https://doi.org/10.1007/s10546-011-9589-1. – reference: 33) M. Lateb, C. Masson, T. Stathopoulos, C. Bédard, Numerical simulation of pollutant dispersion around a building complex, Build. Environ. 45 (2010) 1788–1798. https://doi.org/10.1016/j.buildenv.2010.02.006. – reference: 34) M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations, J. Wind Eng. Ind. Aerodyn. 99 (2011) 330–339. https://doi.org/10.1016/j.jweia.2011.01.003. – reference: 4) E. Canepa, An overview about the study of downwash effects on dispersion of airborne pollutants, Environ. Model. Softw. 19 (2004) 1077–1087. https://doi.org/10.1016/j.envsoft.2003.11.011. – reference: 27) P. Gousseau, B. Blocken, G.J.F. van Heijst, Large-Eddy Simulation of pollutant dispersion around a cubical building: Analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics, Environ. Pollut. 167 (2012) 47–57. https://doi.org/10.1016/j.envpol.2012.03.021. – reference: 38) Y. Tominaga, T. Stathopoulos, CFD simulations of near-field pollutant dispersion with different plume buoyancies, Build. Environ. 131 (2018) 128–139. https://doi.org/10.1016/j.buildenv.2018.01.008. – reference: 51) H. Foroutan, W. Tang, D.K. Heist, S.G. Perry, L.H. Brouwer, E.M. Monbureau, Numerical analysis of pollutant dispersion around elongated buildings: An embedded large eddy simulation approach, Atmos. Environ. 187 (2018) 117–130. https://doi.org/10.1016/j.atmosenv.2018.05.053. – reference: 40) L.H. Hu, Y. Xu, W. Zhu, L. Wu, F. Tang, K.H. Lu, Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon, J. Hazard. Mater. 192 (2011) 940–948. https://doi.org/10.1016/j.jhazmat.2010.12.063. – reference: 10) B. Hajra, T. Stathopoulos, A wind tunnel study of the effect of downstream buildings on near-field pollutant dispersion, Build. Environ. 52 (2012) 19–31. https://doi.org/10.1016/j.buildenv.2011.12.021. – reference: 41) Z. Tong, K.M. Zhang, The near-source impacts of diesel backup generators in urban environments, Atmos. Environ. 109 (2015) 262–271. https://doi.org/10.1016/j.atmosenv.2015.03.020. – reference: 55) H. Olvera, A. Choudhuri, Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres, Int. J. Hydrogen Energy. 31 (2006) 2356–2369. https://doi.org/10.1016/j.ijhydene.2006.02.022. – reference: 18) M. Lateb, R.N. Meroney, M. Yataghene, H. Fellouah, F. Saleh, M.C. Boufadel, On the use of numerical modelling for near-field pollutant dispersion in urban environments − A review, Environ. Pollut. 208 (2016) 271–283. https://doi.org/10.1016/j.envpol.2015.07.039. – reference: 46) V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A. 4 (1992) 1510–1520. https://doi.org/10.1063/1.858424. – reference: 43) Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058. – reference: 35) M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Assessment of near-field pollutant dispersion: Effect of upstream buildings, J. Wind Eng. Ind. Aerodyn. 104–106 (2012) 509–515. https://doi.org/10.1016/j.jweia.2012.02.019. – reference: 37) Y. Tominaga, S. Murakami, A. Mochida, A. Shibuya, Y. Noguchi, Wind tunnel test on turbulent diffusion and concentration fluctuation of buoyant gas near building, in: Proc. 12th Natl. Symp. Wind Eng., 1992: pp. 119-124 (in Japanese). – reference: 14) P. Salizzoni, R. Van Liefferinge, L. Soulhac, P. Mejean, R.J. Perkins, Influence of wall roughness on the dispersion of a passive scalar in a turbulent boundary layer, Atmos. Environ. 43 (2009) 734–748. https://doi.org/10.1016/j.atmosenv.2008.07.057. – reference: 24) P. Gousseau, B. Blocken, T. Stathopoulos, G.J.F. van Heijst, CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal, Atmos. Environ. 45 (2011) 428–438. https://doi.org/10.1016/j.atmosenv.2010.09.065. – reference: 47) F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598–1605. https://doi.org/10.2514/3.12149. – reference: 9) M. Lateb, C. Masson, T. Stathopoulos, C. Bédard, Effect of stack height and exhaust velocity on pollutant dispersion in the wake of a building, Atmos. Environ. 45 (2011) 5150–5163. https://doi.org/10.1016/j.atmosenv.2011.06.040. – reference: 56) P.-Y. Cui, Y. Zhang, J.-H. Zhang, Y.-D. Huang, W.-Q. Tao, Application and numerical error analysis of multiscale method for air flow, heat and pollutant transfer through different scale urban areas, Build. Environ. 149 (2019) 349–365. https://doi.org/10.1016/j.buildenv.2018.12.029. – reference: 1) G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’haeseleer, Distributed generation: Definition, benefits and issues, Energy Policy. 33 (2005) 787–798. https://doi.org/10.1016/j.enpol.2003.10.004. – reference: 16) C. Lin, R. Ooka, H. Kikumoto, T. Sato, M. Arai, Wind tunnel experiment on high-buoyancy gas dispersion around isolated cubic building, J. Wind Eng. Ind. Aerodyn. 202 (2020) 104226. https://doi.org/10.1016/j.jweia.2020.104226. – reference: 29) W.C. Cheng, C.-H. Liu, Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities, J. Wind Eng. Ind. Aerodyn. 99 (2011) 434–442. https://doi.org/10.1016/j.jweia.2010.12.009. – reference: 52) N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations, Int. J. Heat Fluid Flow. 27 (2006) 585–593. https://doi.org/10.1016/j.ijheatfluidflow.2006.02.006. – reference: 49) J. Liu, J. Niu, Y. Du, C.M. Mak, Y. Zhang, LES for pedestrian level wind around an idealized building array—Assessment of sensitivity to influencing parameters, Sustain. Cities Soc. 44 (2019) 406–415. https://doi.org/10.1016/j.scs.2018.10.034. – reference: 20) Y. Tominaga, S. Murakami, A. Mochida, CFD prediction of gaseous diffusion around a cubic model using a dynamic mixed SGS model based on composite grid technique, J. Wind Eng. Ind. Aerodyn. 67–68 (1997) 827–841. https://doi.org/10.1016/S0167-6105(97)00122-0. – reference: 53) Y. Tominaga, T. Stathopoulos, Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmos. Environ. 41 (2007) 8091–8099. https://doi.org/10.1016/j.atmosenv.2007.06.054. – reference: 6) W.-W. Li, R.N. Meroney, Gas dispersion near a cubical model building. Part II. Concentration fluctuation measurements, J. Wind Eng. Ind. Aerodyn. 12 (1983) 35–47. https://doi.org/10.1016/0167-6105(83)90079-X. – reference: 13) A. Gupta, T. Stathopoulos, P. Saathoff, Wind tunnel investigation of the downwash effect of a rooftop structure on plume dispersion, Atmos. Environ. 46 (2012) 496–507. https://doi.org/10.1016/j.atmosenv.2011.08.039. – reference: 7) A.H. Huber, W.H. Snyder, Wind tunnel investigation of the effects of a rectangular-shaped building on dispersion of effluents from short adjacent stacks, Atmos. Environ. 16 (1982) 2837–2848. https://doi.org/10.1016/0004-6981(82)90034-8. – reference: 50) E.M. Monbureau, D.K. Heist, S.G. Perry, L.H. Brouwer, H. Foroutan, W. Tang, Enhancements to AERMOD’s building downwash algorithms based on wind-tunnel and Embedded-LES modeling, Atmos. Environ. 179 (2018) 321–330. https://doi.org/10.1016/j.atmosenv.2018.02.022. – reference: 26) P. Gousseau, B. Blocken, G.J.F. van Heijst, CFD simulation of pollutant dispersion around isolated buildings: On the role of convective and turbulent mass fluxes in the prediction accuracy, J. Hazard. Mater. 194 (2011) 422–434. https://doi.org/10.1016/j.jhazmat.2011.08.008. – reference: 28) Y. Tominaga, T. Stathopoulos, CFD Modeling of Pollution Dispersion in Building Array: Evaluation of turbulent scalar flux modeling in RANS model using LES results, J. Wind Eng. Ind. Aerodyn. 104–106 (2012) 484–491. https://doi.org/10.1016/j.jweia.2012.02.004. – reference: 12) M.F. Yassin, A wind tunnel study on the effect of thermal stability on flow and dispersion of rooftop stack emissions in the near wake of a building, Atmos. Environ. 65 (2013) 89–100. https://doi.org/10.1016/j.atmosenv.2012.10.013. – reference: 11) B. Hajra, T. Stathopoulos, A. Bahloul, A wind tunnel study of the effects of adjacent buildings on near-field pollutant dispersion from rooftop emissions in an urban environment, J. Wind Eng. Ind. Aerodyn. 119 (2013) 133–145. https://doi.org/10.1016/j.jweia.2013.05.003. – reference: 44) T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids. 24 (1995) 227–238. https://doi.org/10.1016/0045-7930(94)00032-T. – reference: 2) S.D. Shah, D.R. Cocker III, K.C. Johnson, J.M. Lee, B.L. Soriano, J. Wayne Miller, Emissions of regulated pollutants from in-use diesel back-up generators, Atmos. Environ. 40 (2006) 4199–4209. https://doi.org/10.1016/j.atmosenv.2005.12.063. – reference: 36) B. Blocken, T. Stathopoulos, P. Saathoff, X. Wang, Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1817–1831. https://doi.org/10.1016/j.jweia.2008.02.049. – reference: 23) S.M. Salim, R. Buccolieri, A. Chan, S. Di Sabatino, Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES, J. Wind Eng. Ind. Aerodyn. 99 (2011) 103–113. https://doi.org/10.1016/j.jweia.2010.12.002. – reference: 32) Y. Dai, C.M. Mak, Z. Ai, J. Hang, Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays, Build. Environ. 137 (2018) 90–107. https://doi.org/10.1016/j.buildenv.2018.04.005. – reference: 25) R. Yoshie, G. Jiang, T. Shirasawa, J. Chung, CFD simulations of gas dispersion around high-rise building in non-isothermal boundary layer, J. Wind Eng. Ind. Aerodyn. 99 (2011) 279–288. https://doi.org/10.1016/j.jweia.2011.01.006. – reference: 31) H. Kikumoto, R. Ooka, Large-eddy simulation of pollutant dispersion in a cavity at fine grid resolutions, Build. Environ. 127 (2018) 127–137. https://doi.org/10.1016/j.buildenv.2017.11.005. – reference: 5) A.G. Robins, I.P. Castro, A wind tunnel investigation of plume dispersion in the vicinity of a surface mounted Cube-I. The flow field, Atmos. Environ. 11 (1977) 291–297. https://doi.org/10.1016/0004-6981(77)90157-3. – reference: 8) G.A. Briggs, A.H. Huber, W.H. Snyder, R.S. Thompson, Diffusion in building wakes for ground-level releases, Atmos. Environ. Part B. Urban Atmos. 26 (1992) 513–515. https://doi.org/10.1016/0957-1272(92)90058-Z. – reference: 30) F. Bazdidi-Tehrani, P. Gholamalipour, M. Kiamansouri, M. Jadidi, Large eddy simulation of thermal stratification effect on convective and turbulent diffusion fluxes concerning gaseous pollutant dispersion around a high-rise model building, J. Build. Perform. Simul. 12 (2019) 97–116. https://doi.org/10.1080/19401493.2018.1486886. – reference: 17) Y. Tominaga, T. Stathopoulos, CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques, Atmos. Environ. 79 (2013) 716–730. https://doi.org/10.1016/j.atmosenv.2013.07.028. – reference: 45) W. Szablewski, B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence. 169 S. m. Abb. London/New York 1972. Academic Press. Preis geb. $ 7.50, ZAMM - Zeitschrift Für Angew. Math. Und Mech. 53 (1973) 424–424. https://doi.org/10.1002/zamm.19730530619. – reference: 21) Y. Tominaga, T. Stathopoulos, Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES, Build. Environ. 45 (2010) 2231–2239. https://doi.org/10.1016/j.buildenv.2010.04.004. – reference: 42) A.S. Monin, A.M. Yaglom, Statistical fluid mechanics : Mechanics of turbulence Vol 1, The MIT Press, 1971. |
| SSID | ssj0050288 ssib002484522 |
| Score | 2.1324565 |
| SourceID | jstage |
| SourceType | Publisher |
| StartPage | 37 |
| Title | 単体建物周辺における高温排気ガスの拡散を対象としたCFD解析 |
| URI | https://www.jstage.jst.go.jp/article/seisankenkyu/73/1/73_37/_article/-char/ja |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 生産研究, 2021/01/01, Vol.73(1), pp.37-46 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-2058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0050288 issn: 0037-105X databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9RAELZCaKBAPMVbKdjygtf22rsNkn3nUwQCCSmRrrN8tlMk0oEgKaDzdRCBSBBKKlCUgkRBPDoIIn_G3HE0_AZm9pFcQgoCjTW3-3k8j9ubGZ93bFnXcgFhW9isljmZU_Og4IDfQTer0TYkE05AWeHi5uTbd_yJKe9mi7VGjvwaemppfq49nj0-cF_Jv3gVxsCvuEv2EJ7dYQoDQIN_4QgehuNf-ZjEjPAGEZzEHomAcHEkikgUkjggXJBQ4IigJAQMJ1Esp1zIH0kYaYKbEYAh4RAOUwIByNknEZd8fMJjIhw5YhMRaHBY10QkDOdYgiMSUiQEI6GrMXg6fGyiJCgPlRh1FjdiBIZo1psNhIWB5ACsQAB7OJ9GNYUHSE0gDMA20kgIEu3cekROvCnVBU51FBy-X3I0QkkAH0Fmbe_i1QUDA4tAKbY7C3p4KBqa3EE9JEygauAU9AhwFnu4ScvhTIhWMVfneBlk1zDa6dswDt13G0YyaUhhJRO0_ZAYwCD0DzKJj1pzW9qSyq_JfiNJjDDa6zDmBhA_WUsFcRW5OKewOFQffBPa1Fti9ixhFadUox2d8ah7wAfEUo4bRB4C_7QzW3RmH82PB-64OXVPk3K9BJJhcBK4CcWDGyRmHrcSJjNQzxx1IArjq1Zu3R0ufzk2-DeZFIPcV2VSWl3dNQwFu_6nWJBDzkBFZZ7GlAni5EnrhK7sxkIlwylrpOicto4P9fs8Y032nq18__ay93Xrx5ON3uL6YHurKjer8mlVLlbdhZ-bK_3PG_3nS_2Py1X3XdX9UpXv-wur_VdrVXep92F78Gm1Ktercrkq38DSGLxd679-cdaaasaT9Ymafq1JbQaSwbQ2TdMCGx-nnPoFpOg5d_J2AZl4CuGV0gJKFB8S7-mUM9YWQZrZRUGhUEhd-Sc7c89Zo517neK8NVaAZVLq5SJPMw-AKQugBJt2vdzOfObkF6wbyiTJfdW7Jjmkoy7-L4NL1rHd1XLZGp17MF9cgTR-rn1V-v43ELXO0w |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8D%98%E4%BD%93%E5%BB%BA%E7%89%A9%E5%91%A8%E8%BE%BA%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E9%AB%98%E6%B8%A9%E6%8E%92%E6%B0%97%E3%82%AC%E3%82%B9%E3%81%AE%E6%8B%A1%E6%95%A3%E3%82%92%E5%AF%BE%E8%B1%A1%E3%81%A8%E3%81%97%E3%81%9FCFD%E8%A7%A3%E6%9E%90&rft.jtitle=%E7%94%9F%E7%94%A3%E7%A0%94%E7%A9%B6&rft.au=%E8%8F%8A%E6%9C%AC%2C+%E8%8B%B1%E7%B4%80&rft.au=%E6%9E%97%2C+%E8%B6%85&rft.au=%E5%A4%A7%E5%B2%A1%2C+%E9%BE%8D%E4%B8%89&rft.au=%E6%96%B0%E4%BA%95%2C+%E8%88%9E%E5%AD%90&rft.date=2021-01-01&rft.pub=%E6%9D%B1%E4%BA%AC%E5%A4%A7%E5%AD%A6%E7%94%9F%E7%94%A3%E6%8A%80%E8%A1%93%E7%A0%94%E7%A9%B6%E6%89%80&rft.issn=0037-105X&rft.eissn=1881-2058&rft.volume=73&rft.issue=1&rft.spage=37&rft.epage=46&rft_id=info:doi/10.11188%2Fseisankenkyu.73.37&rft.externalDocID=article_seisankenkyu_73_1_73_37_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-105X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-105X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-105X&client=summon |