石川県の野鼠の腸内微生物叢

Saved in:
Bibliographic Details
Published in衛生動物 Vol. 76; no. 1; pp. 25 - 31
Main Authors Arifah, Lacante Siti, 所, 正治, 望月, 恒太, 及川, 陽三郎, 村上, 学
Format Journal Article
LanguageEnglish
Published 日本衛生動物学会 25.03.2025
Subjects
Online AccessGet full text
ISSN0424-7086
2185-5609
DOI10.7601/mez.76.25

Cover

Author 及川, 陽三郎
望月, 恒太
所, 正治
Arifah, Lacante Siti
村上, 学
Author_xml – sequence: 1
  fullname: Arifah, Lacante Siti
– sequence: 1
  fullname: 所, 正治
– sequence: 1
  fullname: 望月, 恒太
– sequence: 1
  fullname: 及川, 陽三郎
– sequence: 1
  fullname: 村上, 学
BookMark eNo9jz1Lw1AYhS9SwbQ6-CucUu97v7MIUvyCgovOlzc3N9rQVkm66OZQRSi6OCoVN5cuDjqIf0ZC7L8woric88ADB06TNIYnQ0_IKtC2VhTWB_68hjaTCyRgYGQoFY0aJKCCiVBTo5ZIsygySqURNArIWjV9KV8fqvvJ58VsfnUzf3-s4Wv8Vl6Oy49ZdTetrp_L26dlsphiv_Arf90ih9tbB53dsLu_s9fZ7IYZMMAQtXIcaWKcd14xCahiISUHkaZGMy8kgkshlpgkjMeGRyzRyksTxZEAhbxFNn53s2KER96e5r0B5mcW81HP9b2t_1mtLPwEE2D-hTvG3GbIvwHPdFqO
ContentType Journal Article
Copyright 2025 日本衛生動物学会
Copyright_xml – notice: 2025 日本衛生動物学会
DOI 10.7601/mez.76.25
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Zoology
EISSN 2185-5609
EndPage 31
ExternalDocumentID article_mez_76_1_76_2418_article_char_ja
GroupedDBID 5GY
ALMA_UNASSIGNED_HOLDINGS
DYU
JMI
JSF
MOJWN
OZF
P2P
RJT
ID FETCH-LOGICAL-j121a-a76c3a0d8cece6251a6b455314ff872e45a1cf1b5add23b8392d76e589b9416a3
ISSN 0424-7086
IngestDate Wed Sep 03 06:30:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j121a-a76c3a0d8cece6251a6b455314ff872e45a1cf1b5add23b8392d76e589b9416a3
OpenAccessLink https://www.jstage.jst.go.jp/article/mez/76/1/76_2418/_article/-char/ja
PageCount 7
ParticipantIDs jstage_primary_article_mez_76_1_76_2418_article_char_ja
PublicationCentury 2000
PublicationDate 2025/03/25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025/03/25
  day: 25
PublicationDecade 2020
PublicationTitle 衛生動物
PublicationTitleAlternate 衛生動物
PublicationYear 2025
Publisher 日本衛生動物学会
Publisher_xml – name: 日本衛生動物学会
References Anders, J. L., Moustafa, M. A. M., Mohamed, W. M. A., Hayakawa, T., Nakao, R. and Koizumi, I. 2021. Comparing the gut microbiome along the gastrointestinal tract of three sympatric species of wild rodents. Sci. Rep., 11: 19929.
Anders, J. L., Mychajliw, A. M., Mohamed, A. M. M., Wessam, M. A. M., Hayakawa, T., Nakao, R. and Koizumi, I. 2022. Dietary niche breadth influences the effects of urbanization on the gut microbiota of sympatric rodents. Ecol. Evol., 12: e9216.
Funosas, G., Triado-Margarit, X., Castro, F., Villafuerte, R., Delibes-Mateos, M., Rouco, C. and Casamayor, E. O. 2021. Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus). Sci. Rep., 11: 766.
Lyu, Z., Shao, J., Xue M., Ye, Q., Chen,B., Qin, Y. and Wen, J. 2018. A new species of Giardia Künstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters. Parasit Vectors, 11: 202.
Weldon, L., Abolins, S., Lenzi, L., Bourne, C., Riley, E. M. and Viney, M. 2015. The gut microbiota of wild mice. PLoS One, 10: e0134643.
Aivelo, T. and Norberg, A. 2018. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol., 87: 438–447.
Hugerth, L. W., Muller, E. E., Hu, Y. O., Lebrun, L. A., Roume, H., Lundin, D., Wilmes, P. and Andersson, A. F. 2014. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One, 9: e95567.
Popovic, A., Cao, E. Y., Han, J., Nursimulu, N., Alves-Ferreira, E. V. C., Burrows, K., Kennard, A., Alsmadi, N., Grigg, M. E., Mortha, A. and Parkinson, J. 2024. Commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. ISME J., 18: wrae023.
Han, B. A., Schmidt, J. P., Bowden, S. E. and Drake, J. M. 2015. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. U.S.A., 112: 7039–7044.
Reynolds, L. A., Finlay, B. B. and Maizels, R. M. 2015. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. J. Immunol., 195: 4059–4066.
Brosschot, T. P. and Reynolds, L. A. 2018. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol., 11: 1039–1046.
Midha, A., Jarquin-Diaz, V. H., Ebner, F., Lober, U., Hayani, R., Kundik, A., Cardilli, A., Heitlinger, E., Forslund, S. K. and Hartmann, S. 2022. Guts within guts: the microbiome of the intestinal helminth parasite Ascaris suum is derived but distinct from its host. Microbiome, 10: 229.
Sasaki, M., Anders, L. A. and Nakao, M. 2021. Cestode fauna of murid and cricetid rodents in Hokkaido, Japan, with assignment of DNA barcodes. Species Divers., 26: 255–272.
Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. and St Clair, C. C. 2020. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep., 10: 22207.
Stevens, E. J., Bates, K. A. and King, K. C. 2021. Host microbiota can facilitate pathogen infection. PLoS Pathog., 17: e1009514.
Holm, J. B., Sorobetea, D., Kiilerich, P., Ramayo-Caldas, Y., Estelle, J., Ma, T., Madsen, L., Kristiansen, K. and Svensson-Frej, M. 2015. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS One, 10: e0125495.
Kim, S. L., Choi, J. H., Yi, M. H., Lee, S., Kim, M., Oh, S., Lee, I. Y., Jeon, B. Y., Yong, T. S. and Kim, J. Y. 2022. Metabarcoding of bacteria and parasites in the gut of Apodemus agrarius. Parasit. Vectors, 15: 486.
Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. and Thorne, L. H. 2018. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One, 13: e0209200.
Magoc, T. and Salzberg, S. L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957–2963.
Apprill, A., McNally, S., Parsons, R. and Weber, L. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol., 75: 129–137.
Mistrick, J., Kipp, E. J., Weinberg, S. I., Adams, C. C., Larsen, P. A. and Craft, M. E. 2024. Microbiome diversity and zoonotic bacterial pathogen prevalence in Peromyscus mice from agricultural landscapes and synanthropic habitat. Mol. Ecol., 33: e17309.
Tsunesumi, N., Sato, G., Iwasa, M., Kabeya, H., Maruyama, S. and Tohya, Y. 2012. Novel murine norovirus-like genes in wild rodents in Japan. J. Vet. Med. Sci., 74: 1221–1224.
Appelbee, A. J., Thompson, R. C. and Olson, M. E. 2005. Giardia and Cryptosporidium in mammalian wildlife--current status and future needs. Trends Parasitol., 21: 370–376.
Suzuki, T. A., Martins, F. M. and Nachman, M. W. 2019. Altitudinal variation of the gut microbiota in wild house mice. Mol. Ecol., 28: 2378–2390.
Bui, T. H., Nguyen, K. T., Ikeuchi, S., Yanagawa, H., Sato, Y., Tran, T. H. T., Okumura, M., Niwa, T., Taniguchi, T. and Hayashidani, H. 2021. A long-term observation for ecology of pathogenic Yersinia in wild rodents living in Fukushima Prefecture, Japan. J. Vet. Med. Sci., 83: 1790–1794.
Heni, A. C., Fackelmann, G., Eibner, G., Kreinert, S., Schmid, J., Schwensow, N. I., Wiegand, J., Wilhelm, K. and Sommer, S. 2023. Wildlife gut microbiomes of sympatric generalist species respond differently to anthropogenic landscape disturbances. Anim. Microbiome, 5: 22.
Ono, K., Tsuji, H., Rai, S. K., Yamamoto, A., Masuda, K., Endo, T., Hotta, H., Kawamura, T. and Uga, S. 2001. Contamination of river water by Cryptosporidium parvum oocysts in western Japan. Appl. Environ. Microbiol., 67: 3832–3836.
Walk, S. T., Blum, A. M., Ewing, S. A., Weinstock, J. V. and Young, V. B. 2010. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis., 16: 1841–1849.
Wang, J., Linnenbrink, M., Kunzel, S., Fernandes, R., Nadeau, M. J., Rosenstiel, P. and Baines, J. F. 2014. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A., 111: E2703–E2710.
Kounosu, A., Murase, K., Yoshida, A., Maruyama, H. and Kikuchi, T. 2019. Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Sci. Rep., 9: 15789.
Goertz, S., de Menezes, A. B., Birtles, R. J., Fenn, J., Lowe, A. E., MacColl, A. D. C., Poulin, B., Young, S., Bradley, J. E. and Taylor, C. H. 2019. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale. PLoS One, 14: e0222501.
Condlova, S., Horcickova, M., Havrdova, N., Sak, B., Hlaskova, L., Perec-Matysiak, A., Kicia, M., McEvoy, J. and Kvac, M. 2019. Diversity of Cryptosporidium spp. in Apodemus spp. in Europe. Eur. J. Protistol., 69: 1–13.
McKenney, E. A., Williamson, L., Yoder, A. D., Rawls, J. F., Bilbo, S. D. and Parker, W. 2015. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes, 6: 182–193.
Phillips, J. N., Berlow, M. and Derryberry, E. P. 2018. The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Front. Ecol. Evol., 6: 148.
Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. and Perkins, S. E. 2015. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370: 20140295.
Linnenbrink, M., Wang, J., Hardouin, E. A., Kunzel, S., Metzler, D. and Baines, J. F. 2013. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol., 22: 1904–1916.
Raulo, A., Allen, B. E., Troitsky, T., Husby, A., Firth, J. A., Coulson, T. and Knowles, S. C. L. 2021. Social networks strongly predict the gut microbiota of wild mice. ISME J., 15: 2601–2613.
Roble, G. S., Gillespie, V. and Lipman, N. S. 2012. Infectious disease survey of Mus musculus from pet stores in New York City. J. Am. Assoc. Lab. Anim. Sci., 51: 37–41.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S. 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol., 37: 852–857.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods, 13: 581–583
References_xml – reference: Hugerth, L. W., Muller, E. E., Hu, Y. O., Lebrun, L. A., Roume, H., Lundin, D., Wilmes, P. and Andersson, A. F. 2014. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One, 9: e95567.
– reference: Kounosu, A., Murase, K., Yoshida, A., Maruyama, H. and Kikuchi, T. 2019. Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Sci. Rep., 9: 15789.
– reference: Han, B. A., Schmidt, J. P., Bowden, S. E. and Drake, J. M. 2015. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. U.S.A., 112: 7039–7044.
– reference: Suzuki, T. A., Martins, F. M. and Nachman, M. W. 2019. Altitudinal variation of the gut microbiota in wild house mice. Mol. Ecol., 28: 2378–2390.
– reference: Stevens, E. J., Bates, K. A. and King, K. C. 2021. Host microbiota can facilitate pathogen infection. PLoS Pathog., 17: e1009514.
– reference: Holm, J. B., Sorobetea, D., Kiilerich, P., Ramayo-Caldas, Y., Estelle, J., Ma, T., Madsen, L., Kristiansen, K. and Svensson-Frej, M. 2015. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS One, 10: e0125495.
– reference: Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. and Thorne, L. H. 2018. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One, 13: e0209200.
– reference: Heni, A. C., Fackelmann, G., Eibner, G., Kreinert, S., Schmid, J., Schwensow, N. I., Wiegand, J., Wilhelm, K. and Sommer, S. 2023. Wildlife gut microbiomes of sympatric generalist species respond differently to anthropogenic landscape disturbances. Anim. Microbiome, 5: 22.
– reference: Magoc, T. and Salzberg, S. L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957–2963.
– reference: Anders, J. L., Moustafa, M. A. M., Mohamed, W. M. A., Hayakawa, T., Nakao, R. and Koizumi, I. 2021. Comparing the gut microbiome along the gastrointestinal tract of three sympatric species of wild rodents. Sci. Rep., 11: 19929.
– reference: Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S. 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol., 37: 852–857.
– reference: Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods, 13: 581–583.
– reference: Condlova, S., Horcickova, M., Havrdova, N., Sak, B., Hlaskova, L., Perec-Matysiak, A., Kicia, M., McEvoy, J. and Kvac, M. 2019. Diversity of Cryptosporidium spp. in Apodemus spp. in Europe. Eur. J. Protistol., 69: 1–13.
– reference: Walk, S. T., Blum, A. M., Ewing, S. A., Weinstock, J. V. and Young, V. B. 2010. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis., 16: 1841–1849.
– reference: Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. and Perkins, S. E. 2015. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370: 20140295.
– reference: Goertz, S., de Menezes, A. B., Birtles, R. J., Fenn, J., Lowe, A. E., MacColl, A. D. C., Poulin, B., Young, S., Bradley, J. E. and Taylor, C. H. 2019. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale. PLoS One, 14: e0222501.
– reference: Wang, J., Linnenbrink, M., Kunzel, S., Fernandes, R., Nadeau, M. J., Rosenstiel, P. and Baines, J. F. 2014. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A., 111: E2703–E2710.
– reference: McKenney, E. A., Williamson, L., Yoder, A. D., Rawls, J. F., Bilbo, S. D. and Parker, W. 2015. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes, 6: 182–193.
– reference: Midha, A., Jarquin-Diaz, V. H., Ebner, F., Lober, U., Hayani, R., Kundik, A., Cardilli, A., Heitlinger, E., Forslund, S. K. and Hartmann, S. 2022. Guts within guts: the microbiome of the intestinal helminth parasite Ascaris suum is derived but distinct from its host. Microbiome, 10: 229.
– reference: Phillips, J. N., Berlow, M. and Derryberry, E. P. 2018. The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Front. Ecol. Evol., 6: 148.
– reference: Raulo, A., Allen, B. E., Troitsky, T., Husby, A., Firth, J. A., Coulson, T. and Knowles, S. C. L. 2021. Social networks strongly predict the gut microbiota of wild mice. ISME J., 15: 2601–2613.
– reference: Bui, T. H., Nguyen, K. T., Ikeuchi, S., Yanagawa, H., Sato, Y., Tran, T. H. T., Okumura, M., Niwa, T., Taniguchi, T. and Hayashidani, H. 2021. A long-term observation for ecology of pathogenic Yersinia in wild rodents living in Fukushima Prefecture, Japan. J. Vet. Med. Sci., 83: 1790–1794.
– reference: Popovic, A., Cao, E. Y., Han, J., Nursimulu, N., Alves-Ferreira, E. V. C., Burrows, K., Kennard, A., Alsmadi, N., Grigg, M. E., Mortha, A. and Parkinson, J. 2024. Commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. ISME J., 18: wrae023.
– reference: Funosas, G., Triado-Margarit, X., Castro, F., Villafuerte, R., Delibes-Mateos, M., Rouco, C. and Casamayor, E. O. 2021. Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus). Sci. Rep., 11: 766.
– reference: Aivelo, T. and Norberg, A. 2018. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol., 87: 438–447.
– reference: Weldon, L., Abolins, S., Lenzi, L., Bourne, C., Riley, E. M. and Viney, M. 2015. The gut microbiota of wild mice. PLoS One, 10: e0134643.
– reference: Lyu, Z., Shao, J., Xue M., Ye, Q., Chen,B., Qin, Y. and Wen, J. 2018. A new species of Giardia Künstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters. Parasit Vectors, 11: 202.
– reference: Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. and St Clair, C. C. 2020. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep., 10: 22207.
– reference: Brosschot, T. P. and Reynolds, L. A. 2018. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol., 11: 1039–1046.
– reference: Kim, S. L., Choi, J. H., Yi, M. H., Lee, S., Kim, M., Oh, S., Lee, I. Y., Jeon, B. Y., Yong, T. S. and Kim, J. Y. 2022. Metabarcoding of bacteria and parasites in the gut of Apodemus agrarius. Parasit. Vectors, 15: 486.
– reference: Reynolds, L. A., Finlay, B. B. and Maizels, R. M. 2015. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. J. Immunol., 195: 4059–4066.
– reference: Tsunesumi, N., Sato, G., Iwasa, M., Kabeya, H., Maruyama, S. and Tohya, Y. 2012. Novel murine norovirus-like genes in wild rodents in Japan. J. Vet. Med. Sci., 74: 1221–1224.
– reference: Appelbee, A. J., Thompson, R. C. and Olson, M. E. 2005. Giardia and Cryptosporidium in mammalian wildlife--current status and future needs. Trends Parasitol., 21: 370–376.
– reference: Sasaki, M., Anders, L. A. and Nakao, M. 2021. Cestode fauna of murid and cricetid rodents in Hokkaido, Japan, with assignment of DNA barcodes. Species Divers., 26: 255–272.
– reference: Ono, K., Tsuji, H., Rai, S. K., Yamamoto, A., Masuda, K., Endo, T., Hotta, H., Kawamura, T. and Uga, S. 2001. Contamination of river water by Cryptosporidium parvum oocysts in western Japan. Appl. Environ. Microbiol., 67: 3832–3836.
– reference: Anders, J. L., Mychajliw, A. M., Mohamed, A. M. M., Wessam, M. A. M., Hayakawa, T., Nakao, R. and Koizumi, I. 2022. Dietary niche breadth influences the effects of urbanization on the gut microbiota of sympatric rodents. Ecol. Evol., 12: e9216.
– reference: Roble, G. S., Gillespie, V. and Lipman, N. S. 2012. Infectious disease survey of Mus musculus from pet stores in New York City. J. Am. Assoc. Lab. Anim. Sci., 51: 37–41.
– reference: Mistrick, J., Kipp, E. J., Weinberg, S. I., Adams, C. C., Larsen, P. A. and Craft, M. E. 2024. Microbiome diversity and zoonotic bacterial pathogen prevalence in Peromyscus mice from agricultural landscapes and synanthropic habitat. Mol. Ecol., 33: e17309.
– reference: Apprill, A., McNally, S., Parsons, R. and Weber, L. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol., 75: 129–137.
– reference: Linnenbrink, M., Wang, J., Hardouin, E. A., Kunzel, S., Metzler, D. and Baines, J. F. 2013. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol., 22: 1904–1916.
SSID ssj0058409
Score 2.289272
SourceID jstage
SourceType Publisher
StartPage 25
SubjectTerms Ishikawa prefecture
lake
microbiome
reservoir
wild mice
Title 石川県の野鼠の腸内微生物叢
URI https://www.jstage.jst.go.jp/article/mez/76/1/76_2418/_article/-char/ja
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 衛生動物, 2025/03/25, Vol.76(1), pp.25-31
journalDatabaseRights – providerCode: PRVCAB
  databaseName: Nutrition and Food Sciences Database
  customDbUrl:
  eissn: 2185-5609
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0058409
  issn: 0424-7086
  databaseCode: DYU
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.cabidigitallibrary.org/product/zd
  providerName: CAB International
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09bxMx1CpFSEgIQQHxrQxYDNWVnM--s0ff9aIKCRYaqbCcbMenJhIpQunSjaEgJAQLI6iIjaULAwyIP4Oi0H_Bsy-XXBFD6GK92M9-fu85ee85fjZCdyJDtG33yqBtdBxQYXWgrIFghVMV6STUxO93PHgYb3Tp_S22tXRKNk4t7Y70mtn7Z17JSbQKdaBXlyX7H5qdDQoVAIN-oQQNQ7mQjnGeYNHBaYRzhlOA131NhnmG8wicRCxznAsMAT_3QJph2W40ccyhI3fdeexgN07um2Ac6gYHgAsshcfpYEma7qwbQYZYpA18QEuxYLOO8yXVL9V2lYvt9bn6qD_q1604jx26O4mYrboPch3LyAEpwWnaRAP-HEEPcF7jA0eCOOqSYinn-H7WXM4l5PEFFiANEBd17ANhJyUQS97cBSHMHQOrMqb9uvVEEyzZlLrMFhGAnxRwE3tqMHnZ-PWlhAZJu76n29eBO8QCcBFF03xUz9cc-5pMbQFreBWVqfvbXrkDSbDInto9ANfqDseu_54urgJwiiQuQleA18WLusFl5xUDCBFOEzBs7vWS9cfd2hlhLn53zkjNTXW5lqN7b0YVnK8BhCL1MUbvWW1eQOenIVFLVpQuoiU7XEHnqv3kVpUmt4LOPNnxfwBdQncnB1_H3z5OPrz59eLw6NXbox-fAPi9_338cn_883Dy_mDy-sv43efLqNvJN7ONYPrcRzAISagClcQmUu0eN9ZYCMtDFWvKwEbQsuQJsZSp0JShZmCSSaSdZ99LYsu40ALCChVdQcvDnaG9ilrKhCaxRKhQadoTRoQlNRC4mHbJKenZayipOC6eVXe6FIuK-fqJe95AZ-cL9yZaHj3ftbfAoR3p215lfwBXvYSH
linkProvider CAB International
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%9F%B3%E5%B7%9D%E7%9C%8C%E3%81%AE%E9%87%8E%E9%BC%A0%E3%81%AE%E8%85%B8%E5%86%85%E5%BE%AE%E7%94%9F%E7%89%A9%E5%8F%A2&rft.jtitle=%E8%A1%9B%E7%94%9F%E5%8B%95%E7%89%A9&rft.au=Arifah%2C+Lacante+Siti&rft.au=%E6%89%80%2C+%E6%AD%A3%E6%B2%BB&rft.au=%E6%9C%9B%E6%9C%88%2C+%E6%81%92%E5%A4%AA&rft.au=%E5%8F%8A%E5%B7%9D%2C+%E9%99%BD%E4%B8%89%E9%83%8E&rft.date=2025-03-25&rft.pub=%E6%97%A5%E6%9C%AC%E8%A1%9B%E7%94%9F%E5%8B%95%E7%89%A9%E5%AD%A6%E4%BC%9A&rft.issn=0424-7086&rft.eissn=2185-5609&rft.volume=76&rft.issue=1&rft.spage=25&rft.epage=31&rft_id=info:doi/10.7601%2Fmez.76.25&rft.externalDocID=article_mez_76_1_76_2418_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0424-7086&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0424-7086&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0424-7086&client=summon