マイクロ流体デバイス内混相流れの共焦点マイクロPIVによる可視化計測
This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liqui...
Saved in:
Published in | 混相流 Vol. 28; no. 2; pp. 183 - 192 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
日本混相流学会
15.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0914-2843 1881-5790 |
DOI | 10.3811/jjmf.28.183 |
Cover
Abstract | This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liquid, simultaneously and separately. The system has high temporal resolution up to 2000 frames per second, and high spatial resolution up to 0.116 μm/pixel in plane and 0.58μm out of plane, which is enough to resolve cell size measurement target. In this paper, three measurement demonstrations are shown. There are flow inside and outside of moving microdroplet, droplet formation at T-shaped junction and red blood cells (RBCs) dispersed flow. The droplet is studied as a liquid-liquid multiphase flow using immiscible two liquids of oil and water. This study clarifies not only three-dimensional flow structure using continuity equation-assisted method, but also shear force between its interface. These informations are necessary for estimation of mixing effect using circulation in the droplet and discussion on droplet formation mechanism. The measurement of RBCs mixed flow requires more due to its unsteadiness and randomness derives from characteristics of live cells. Our developed ‘Target-tracking system’ can measure one individual cell for long time under the high-magnification measurement condition. Finally the tank-treading motion of RBC and the surrounding flow structure simultaneously for the investigation of specific behavior of RBC. |
---|---|
AbstractList | This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liquid, simultaneously and separately. The system has high temporal resolution up to 2000 frames per second, and high spatial resolution up to 0.116 μm/pixel in plane and 0.58μm out of plane, which is enough to resolve cell size measurement target. In this paper, three measurement demonstrations are shown. There are flow inside and outside of moving microdroplet, droplet formation at T-shaped junction and red blood cells (RBCs) dispersed flow. The droplet is studied as a liquid-liquid multiphase flow using immiscible two liquids of oil and water. This study clarifies not only three-dimensional flow structure using continuity equation-assisted method, but also shear force between its interface. These informations are necessary for estimation of mixing effect using circulation in the droplet and discussion on droplet formation mechanism. The measurement of RBCs mixed flow requires more due to its unsteadiness and randomness derives from characteristics of live cells. Our developed ‘Target-tracking system’ can measure one individual cell for long time under the high-magnification measurement condition. Finally the tank-treading motion of RBC and the surrounding flow structure simultaneously for the investigation of specific behavior of RBC. |
Author | 木下, 晴之 大石, 正道 大島, まり 藤井, 輝夫 |
Author_xml | – sequence: 1 fullname: 大石, 正道 organization: 東京大学生産技術研究所 – sequence: 1 fullname: 木下, 晴之 organization: 東京大学生産技術研究所 – sequence: 1 fullname: 大島, まり organization: 東京大学大学院情報学環 – sequence: 1 fullname: 藤井, 輝夫 organization: 東京大学生産技術研究所 |
BookMark | eNpNkEtLw0AcxBepYK09-TlS97-bx-5FkOKjUNCDeo2bTaINtkrSi8cmVgsWFIReBE9SBB_Fg7Q9-GnWtP0YtiriZQbmx8xhFlGmdlLzEFoGXKAMYCUIqn6BsAIwOoeywBhohsVxBmUxB10jTKcLKB9FFQdjzE0wgWfRgUruVfyg4p5KXkbvjc-PW5VcquTmOxymF81Rvz--G0yRituq8Zo238bn3XE8_F_cKe2rxpOKWyq-Sq97k24nbXcmj63R4HkJzfviOPLyv55Dexvru8Utrby9WSqulbUACAhNgPSkdCSmrqlb2DephUFwx8XUM0xHWga3gHBLEN8CBi6WxOAukz6nurSIoDm0-rMbRHVx6NmnYaUqwjNbhPWKPPbs2Ts2YTaZyfSiPyCPRGgHgn4BnvSBrw |
ContentType | Journal Article |
Copyright | 2014 日本混相流学会 |
Copyright_xml | – notice: 2014 日本混相流学会 |
DOI | 10.3811/jjmf.28.183 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1881-5790 |
EndPage | 192 |
ExternalDocumentID | article_jjmf_28_2_28_183_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS CS3 JSF KQ8 OK1 RJT TUS |
ID | FETCH-LOGICAL-j121a-a1ceccbc03d6470f63701a9bd03e56bc75971297a2f7181d0c259d8cf934c72a3 |
ISSN | 0914-2843 |
IngestDate | Wed Sep 03 06:28:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j121a-a1ceccbc03d6470f63701a9bd03e56bc75971297a2f7181d0c259d8cf934c72a3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjmf/28/2/28_183/_article/-char/ja |
PageCount | 10 |
ParticipantIDs | jstage_primary_article_jjmf_28_2_28_183_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2014/06/15 |
PublicationDateYYYYMMDD | 2014-06-15 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014/06/15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | 混相流 |
PublicationYear | 2014 |
Publisher | 日本混相流学会 |
Publisher_xml | – name: 日本混相流学会 |
References | [3] Song, H., Chen, D. L. and Ismagilov, R. F., Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed., Vol. 45, 7336-7356 (2006). [1] Reyes, D. R., Iossifidis, D., Auroux, P. A. and Manz, A., Micro Total Analysis Systems: 1. Introduction, Theory, and Technology, Anal. Chem., Vol. 74, 2623-2636 (2002). [4] Teh, S-Y., Lin, R., Hung, L-H. and Lee, A. P., Droplet Microfluidics, Lab Chip, Vol. 8, 198-220 (2008). [5] Arya, S. K., Lim, B. and Rahman, A. R. A., Enrichment, Detection and Clinical Significance of Circulating Tumor Cells, Lab Chip, Vol. 13, 1995-2027 (2013). [13] Garstecki, P., Fuerstman, M. J., Stone, H. A., Whitesides, G. M., Formation of Droplets and Bubbles in a Microfluidic T-junction-Scaling and Mechanism of Break-up, Lab Chip, Vol. 6, 437-446 (2006). [2] Auroux, P. A., Iossifidis, D., Reyes, D. R. and Manz, A., Micro Total Analysis Systems: 2. Analytical Standard Operations and Applications, Anal. Chem., Vol. 74, 2637-52 (2002). [8] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Micro-PIV Measurement of Droplet Formation Phenomena in the Micro T-shaped Junction, Proc. of JSME Annual Meeting, J053045 (2013). [7] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Simultaneous Measurement of Internal and Surrounding Flows of a Moving Droplet using Multicolour Confocal Micro-Particle Image Velocimetry (Micro-PIV), Meas. Sci. Technol., Vol. 22, 105401 (2011). [16] Yang, S., Ündar, A. and Zahn, J. D., A Microfluidic Device for Continuous, Real Time Blood Plasma Separation, Lab Chip, Vol. 6, 871-880 (2006). [14] Chandran, K. B., Rittgers, S. E., Yoganathan, A. P., Biofluid Mechanics: The Human Circulation, 116-166, Taylor & Francis, CRC Press (2007). [9] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Continuous and Simultaneous Measurement of the Tank-treading Motion of Red Blood Cells and Surrounding Flow using Translational Confocal Micro-Particle Image Velocimetry (Micro-PIV) with Sub-micron Resolution, Meas. Sci. Technol., Vol. 23, 035301 (2012). [15] Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W., Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device, Anal. Chem., Vol. 77, 933-937 (2005). [12] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Measurement of Three Dimensional Flow Structure during Microdroplet Formation using Phase-locked Multicolor Confocal Micro-PIV, Proc. Micro Total Analysis Systems 2013, No. 1056, 904-906 (2013). [6] Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J., A Particle Image Velocimetry System for Microfluidics, Exp. Fluids, Vol. 25, 316-319 (1998). [10] Kinoshita, H., Oshima, M., Kaneda, S. and Fujii, T., Confocal Micro PIV Measurement of Internal Flow in a Moving Droplet, Proc. Micro Total Analysis Systems 2005, No. 0192 (2005). [11] Kinoshita, H., Kaneda, S., Fujii, T. and Oshima, M., Three-dimensional Measurement and Visualization of Internal Flow of a Moving Droplet using Confocal Micro-PIV, Lab Chip, Vol. 7, 338-346 (2007). |
References_xml | – reference: [9] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Continuous and Simultaneous Measurement of the Tank-treading Motion of Red Blood Cells and Surrounding Flow using Translational Confocal Micro-Particle Image Velocimetry (Micro-PIV) with Sub-micron Resolution, Meas. Sci. Technol., Vol. 23, 035301 (2012). – reference: [13] Garstecki, P., Fuerstman, M. J., Stone, H. A., Whitesides, G. M., Formation of Droplets and Bubbles in a Microfluidic T-junction-Scaling and Mechanism of Break-up, Lab Chip, Vol. 6, 437-446 (2006). – reference: [5] Arya, S. K., Lim, B. and Rahman, A. R. A., Enrichment, Detection and Clinical Significance of Circulating Tumor Cells, Lab Chip, Vol. 13, 1995-2027 (2013). – reference: [1] Reyes, D. R., Iossifidis, D., Auroux, P. A. and Manz, A., Micro Total Analysis Systems: 1. Introduction, Theory, and Technology, Anal. Chem., Vol. 74, 2623-2636 (2002). – reference: [11] Kinoshita, H., Kaneda, S., Fujii, T. and Oshima, M., Three-dimensional Measurement and Visualization of Internal Flow of a Moving Droplet using Confocal Micro-PIV, Lab Chip, Vol. 7, 338-346 (2007). – reference: [2] Auroux, P. A., Iossifidis, D., Reyes, D. R. and Manz, A., Micro Total Analysis Systems: 2. Analytical Standard Operations and Applications, Anal. Chem., Vol. 74, 2637-52 (2002). – reference: [7] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Simultaneous Measurement of Internal and Surrounding Flows of a Moving Droplet using Multicolour Confocal Micro-Particle Image Velocimetry (Micro-PIV), Meas. Sci. Technol., Vol. 22, 105401 (2011). – reference: [8] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Micro-PIV Measurement of Droplet Formation Phenomena in the Micro T-shaped Junction, Proc. of JSME Annual Meeting, J053045 (2013). – reference: [3] Song, H., Chen, D. L. and Ismagilov, R. F., Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed., Vol. 45, 7336-7356 (2006). – reference: [12] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Measurement of Three Dimensional Flow Structure during Microdroplet Formation using Phase-locked Multicolor Confocal Micro-PIV, Proc. Micro Total Analysis Systems 2013, No. 1056, 904-906 (2013). – reference: [15] Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W., Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device, Anal. Chem., Vol. 77, 933-937 (2005). – reference: [16] Yang, S., Ündar, A. and Zahn, J. D., A Microfluidic Device for Continuous, Real Time Blood Plasma Separation, Lab Chip, Vol. 6, 871-880 (2006). – reference: [4] Teh, S-Y., Lin, R., Hung, L-H. and Lee, A. P., Droplet Microfluidics, Lab Chip, Vol. 8, 198-220 (2008). – reference: [10] Kinoshita, H., Oshima, M., Kaneda, S. and Fujii, T., Confocal Micro PIV Measurement of Internal Flow in a Moving Droplet, Proc. Micro Total Analysis Systems 2005, No. 0192 (2005). – reference: [6] Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J., A Particle Image Velocimetry System for Microfluidics, Exp. Fluids, Vol. 25, 316-319 (1998). – reference: [14] Chandran, K. B., Rittgers, S. E., Yoganathan, A. P., Biofluid Mechanics: The Human Circulation, 116-166, Taylor & Francis, CRC Press (2007). |
SSID | ssib000961619 ssib005901927 ssj0069034 |
Score | 1.8794938 |
Snippet | This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 183 |
SubjectTerms | Confocal micro-PIV Droplet formation Micro-TAS Red blood cell Wavelength separation |
Title | マイクロ流体デバイス内混相流れの共焦点マイクロPIVによる可視化計測 |
URI | https://www.jstage.jst.go.jp/article/jjmf/28/2/28_183/_article/-char/ja |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 混相流, 2014/06/15, Vol.28(2), pp.183-192 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-5790 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069034 issn: 0914-2843 databaseCode: KQ8 dateStart: 19870101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ivOhBfOKbHOzjxJ2e6e7q4_RmlqgoConkNs7zsGAUSS7esms0YEBByEXwJEHwETxIkoO_Ztwk-Cus7pnZjCFqDCxD0131dXXV9FbV0A_LupZBAuDJzAZJMxs9NLfRKaS2B3GSJlIkLNK7kW_f4ZPT3s0ZNjNy5Gdj1dL8XDyePN13X8lhrIp1aFe9S_Y_LDsExQoso33xiRbG54FsTAKXgEtkYAqU-F5d6FRN_gQJOFEMA0YSeERNEOlWTSBq9tZediVJgCycADPsQv8CQaQiChqAhhjapuAQPzBcjChHE4NHfG4KJeC_Rb17434NpWpwqAvKgHcMPWhkyU1N2xSwBgwx1xJW50l2ay39cQj166aRUCK_JOkQ5epXT5OhAn3UmNRSSXeXHvtv6z61UkFLV9FLSZRnapFF7YPPNLjiJb0ZrKp1Av4uPRApjJIQySeSlfRAFI53ooZTzW82jqfXlpW7Vs0sM-IgCKulbf_VmMyMlZsesRO_-REXsTHAKIeflS4MwLGZKC9hrX0chcZcpg2H5YDbiH2c8l7CvW4VozrjVrsP83EK40Oe384pr2ZBqKlCCiHVDyQN6wa9jTDsYi5zlArO9W0jt-41UgHJMfloHCUndfIx_HjCZcusEBmOuNxrqyW73pAL48guZlX1ikwTJE6dtE5U2d2YX8pyyhrJZk9bxxtnfp6xHhT9d0XvfdFbK_qft74t_Pj-pui_KPqvTeXm4Pni1vr69tsNbCp6y8XCl8Hi1-1nq9u9zSYjTpVi4WPRWyp6Lwev1nZWVwbLKzsflrY2Pp21pjvBVHvSrq45sbsOdSI7chL8H42TlptyT7Ry7oqWE8k4bbkZ43EiMOfHqFxENMdA0klbCWUyhSSXrpcIGrnnrNHZR7PZeWssSVIaQwwReImXRzSiAjLGcmA5j7lLL1iiVE_4uDzLJjyo1S4emvOSdWx3Cly2RueezGdXMJCfi6-aN-AXHyHNwg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%9E%E3%82%A4%E3%82%AF%E3%83%AD%E6%B5%81%E4%BD%93%E3%83%87%E3%83%90%E3%82%A4%E3%82%B9%E5%86%85%E6%B7%B7%E7%9B%B8%E6%B5%81%E3%82%8C%E3%81%AE%E5%85%B1%E7%84%A6%E7%82%B9%E3%83%9E%E3%82%A4%E3%82%AF%E3%83%ADPIV%E3%81%AB%E3%82%88%E3%82%8B%E5%8F%AF%E8%A6%96%E5%8C%96%E8%A8%88%E6%B8%AC&rft.jtitle=%E6%B7%B7%E7%9B%B8%E6%B5%81&rft.au=%E5%A4%A7%E7%9F%B3%2C+%E6%AD%A3%E9%81%93&rft.au=%E6%9C%A8%E4%B8%8B%2C+%E6%99%B4%E4%B9%8B&rft.au=%E5%A4%A7%E5%B3%B6%2C+%E3%81%BE%E3%82%8A&rft.au=%E8%97%A4%E4%BA%95%2C+%E8%BC%9D%E5%A4%AB&rft.date=2014-06-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B7%B7%E7%9B%B8%E6%B5%81%E5%AD%A6%E4%BC%9A&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=28&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.3811%2Fjjmf.28.183&rft.externalDocID=article_jjmf_28_2_28_183_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon |