マイクロ流体デバイス内混相流れの共焦点マイクロPIVによる可視化計測

This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liqui...

Full description

Saved in:
Bibliographic Details
Published in混相流 Vol. 28; no. 2; pp. 183 - 192
Main Authors 大石, 正道, 木下, 晴之, 大島, まり, 藤井, 輝夫
Format Journal Article
LanguageEnglish
Published 日本混相流学会 15.06.2014
Subjects
Online AccessGet full text
ISSN0914-2843
1881-5790
DOI10.3811/jjmf.28.183

Cover

Abstract This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liquid, simultaneously and separately. The system has high temporal resolution up to 2000 frames per second, and high spatial resolution up to 0.116 μm/pixel in plane and 0.58μm out of plane, which is enough to resolve cell size measurement target.  In this paper, three measurement demonstrations are shown. There are flow inside and outside of moving microdroplet, droplet formation at T-shaped junction and red blood cells (RBCs) dispersed flow. The droplet is studied as a liquid-liquid multiphase flow using immiscible two liquids of oil and water. This study clarifies not only three-dimensional flow structure using continuity equation-assisted method, but also shear force between its interface. These informations are necessary for estimation of mixing effect using circulation in the droplet and discussion on droplet formation mechanism.  The measurement of RBCs mixed flow requires more due to its unsteadiness and randomness derives from characteristics of live cells. Our developed ‘Target-tracking system’ can measure one individual cell for long time under the high-magnification measurement condition. Finally the tank-treading motion of RBC and the surrounding flow structure simultaneously for the investigation of specific behavior of RBC.
AbstractList This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation technique. The present system can measure the dynamic interaction between flows in two different phases, such as liquid-liquid or solid-liquid, simultaneously and separately. The system has high temporal resolution up to 2000 frames per second, and high spatial resolution up to 0.116 μm/pixel in plane and 0.58μm out of plane, which is enough to resolve cell size measurement target.  In this paper, three measurement demonstrations are shown. There are flow inside and outside of moving microdroplet, droplet formation at T-shaped junction and red blood cells (RBCs) dispersed flow. The droplet is studied as a liquid-liquid multiphase flow using immiscible two liquids of oil and water. This study clarifies not only three-dimensional flow structure using continuity equation-assisted method, but also shear force between its interface. These informations are necessary for estimation of mixing effect using circulation in the droplet and discussion on droplet formation mechanism.  The measurement of RBCs mixed flow requires more due to its unsteadiness and randomness derives from characteristics of live cells. Our developed ‘Target-tracking system’ can measure one individual cell for long time under the high-magnification measurement condition. Finally the tank-treading motion of RBC and the surrounding flow structure simultaneously for the investigation of specific behavior of RBC.
Author 木下, 晴之
大石, 正道
大島, まり
藤井, 輝夫
Author_xml – sequence: 1
  fullname: 大石, 正道
  organization: 東京大学生産技術研究所
– sequence: 1
  fullname: 木下, 晴之
  organization: 東京大学生産技術研究所
– sequence: 1
  fullname: 大島, まり
  organization: 東京大学大学院情報学環
– sequence: 1
  fullname: 藤井, 輝夫
  organization: 東京大学生産技術研究所
BookMark eNpNkEtLw0AcxBepYK09-TlS97-bx-5FkOKjUNCDeo2bTaINtkrSi8cmVgsWFIReBE9SBB_Fg7Q9-GnWtP0YtiriZQbmx8xhFlGmdlLzEFoGXKAMYCUIqn6BsAIwOoeywBhohsVxBmUxB10jTKcLKB9FFQdjzE0wgWfRgUruVfyg4p5KXkbvjc-PW5VcquTmOxymF81Rvz--G0yRituq8Zo238bn3XE8_F_cKe2rxpOKWyq-Sq97k24nbXcmj63R4HkJzfviOPLyv55Dexvru8Utrby9WSqulbUACAhNgPSkdCSmrqlb2DephUFwx8XUM0xHWga3gHBLEN8CBi6WxOAukz6nurSIoDm0-rMbRHVx6NmnYaUqwjNbhPWKPPbs2Ts2YTaZyfSiPyCPRGgHgn4BnvSBrw
ContentType Journal Article
Copyright 2014 日本混相流学会
Copyright_xml – notice: 2014 日本混相流学会
DOI 10.3811/jjmf.28.183
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-5790
EndPage 192
ExternalDocumentID article_jjmf_28_2_28_183_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
RJT
TUS
ID FETCH-LOGICAL-j121a-a1ceccbc03d6470f63701a9bd03e56bc75971297a2f7181d0c259d8cf934c72a3
ISSN 0914-2843
IngestDate Wed Sep 03 06:28:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j121a-a1ceccbc03d6470f63701a9bd03e56bc75971297a2f7181d0c259d8cf934c72a3
OpenAccessLink https://www.jstage.jst.go.jp/article/jjmf/28/2/28_183/_article/-char/ja
PageCount 10
ParticipantIDs jstage_primary_article_jjmf_28_2_28_183_article_char_ja
PublicationCentury 2000
PublicationDate 2014/06/15
PublicationDateYYYYMMDD 2014-06-15
PublicationDate_xml – month: 06
  year: 2014
  text: 2014/06/15
  day: 15
PublicationDecade 2010
PublicationTitle 混相流
PublicationYear 2014
Publisher 日本混相流学会
Publisher_xml – name: 日本混相流学会
References [3] Song, H., Chen, D. L. and Ismagilov, R. F., Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed., Vol. 45, 7336-7356 (2006).
[1] Reyes, D. R., Iossifidis, D., Auroux, P. A. and Manz, A., Micro Total Analysis Systems: 1. Introduction, Theory, and Technology, Anal. Chem., Vol. 74, 2623-2636 (2002).
[4] Teh, S-Y., Lin, R., Hung, L-H. and Lee, A. P., Droplet Microfluidics, Lab Chip, Vol. 8, 198-220 (2008).
[5] Arya, S. K., Lim, B. and Rahman, A. R. A., Enrichment, Detection and Clinical Significance of Circulating Tumor Cells, Lab Chip, Vol. 13, 1995-2027 (2013).
[13] Garstecki, P., Fuerstman, M. J., Stone, H. A., Whitesides, G. M., Formation of Droplets and Bubbles in a Microfluidic T-junction-Scaling and Mechanism of Break-up, Lab Chip, Vol. 6, 437-446 (2006).
[2] Auroux, P. A., Iossifidis, D., Reyes, D. R. and Manz, A., Micro Total Analysis Systems: 2. Analytical Standard Operations and Applications, Anal. Chem., Vol. 74, 2637-52 (2002).
[8] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Micro-PIV Measurement of Droplet Formation Phenomena in the Micro T-shaped Junction, Proc. of JSME Annual Meeting, J053045 (2013).
[7] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Simultaneous Measurement of Internal and Surrounding Flows of a Moving Droplet using Multicolour Confocal Micro-Particle Image Velocimetry (Micro-PIV), Meas. Sci. Technol., Vol. 22, 105401 (2011).
[16] Yang, S., Ündar, A. and Zahn, J. D., A Microfluidic Device for Continuous, Real Time Blood Plasma Separation, Lab Chip, Vol. 6, 871-880 (2006).
[14] Chandran, K. B., Rittgers, S. E., Yoganathan, A. P., Biofluid Mechanics: The Human Circulation, 116-166, Taylor & Francis, CRC Press (2007).
[9] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Continuous and Simultaneous Measurement of the Tank-treading Motion of Red Blood Cells and Surrounding Flow using Translational Confocal Micro-Particle Image Velocimetry (Micro-PIV) with Sub-micron Resolution, Meas. Sci. Technol., Vol. 23, 035301 (2012).
[15] Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W., Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device, Anal. Chem., Vol. 77, 933-937 (2005).
[12] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Measurement of Three Dimensional Flow Structure during Microdroplet Formation using Phase-locked Multicolor Confocal Micro-PIV, Proc. Micro Total Analysis Systems 2013, No. 1056, 904-906 (2013).
[6] Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J., A Particle Image Velocimetry System for Microfluidics, Exp. Fluids, Vol. 25, 316-319 (1998).
[10] Kinoshita, H., Oshima, M., Kaneda, S. and Fujii, T., Confocal Micro PIV Measurement of Internal Flow in a Moving Droplet, Proc. Micro Total Analysis Systems 2005, No. 0192 (2005).
[11] Kinoshita, H., Kaneda, S., Fujii, T. and Oshima, M., Three-dimensional Measurement and Visualization of Internal Flow of a Moving Droplet using Confocal Micro-PIV, Lab Chip, Vol. 7, 338-346 (2007).
References_xml – reference: [9] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Continuous and Simultaneous Measurement of the Tank-treading Motion of Red Blood Cells and Surrounding Flow using Translational Confocal Micro-Particle Image Velocimetry (Micro-PIV) with Sub-micron Resolution, Meas. Sci. Technol., Vol. 23, 035301 (2012).
– reference: [13] Garstecki, P., Fuerstman, M. J., Stone, H. A., Whitesides, G. M., Formation of Droplets and Bubbles in a Microfluidic T-junction-Scaling and Mechanism of Break-up, Lab Chip, Vol. 6, 437-446 (2006).
– reference: [5] Arya, S. K., Lim, B. and Rahman, A. R. A., Enrichment, Detection and Clinical Significance of Circulating Tumor Cells, Lab Chip, Vol. 13, 1995-2027 (2013).
– reference: [1] Reyes, D. R., Iossifidis, D., Auroux, P. A. and Manz, A., Micro Total Analysis Systems: 1. Introduction, Theory, and Technology, Anal. Chem., Vol. 74, 2623-2636 (2002).
– reference: [11] Kinoshita, H., Kaneda, S., Fujii, T. and Oshima, M., Three-dimensional Measurement and Visualization of Internal Flow of a Moving Droplet using Confocal Micro-PIV, Lab Chip, Vol. 7, 338-346 (2007).
– reference: [2] Auroux, P. A., Iossifidis, D., Reyes, D. R. and Manz, A., Micro Total Analysis Systems: 2. Analytical Standard Operations and Applications, Anal. Chem., Vol. 74, 2637-52 (2002).
– reference: [7] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Simultaneous Measurement of Internal and Surrounding Flows of a Moving Droplet using Multicolour Confocal Micro-Particle Image Velocimetry (Micro-PIV), Meas. Sci. Technol., Vol. 22, 105401 (2011).
– reference: [8] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Micro-PIV Measurement of Droplet Formation Phenomena in the Micro T-shaped Junction, Proc. of JSME Annual Meeting, J053045 (2013).
– reference: [3] Song, H., Chen, D. L. and Ismagilov, R. F., Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed., Vol. 45, 7336-7356 (2006).
– reference: [12] Oishi, M., Kinoshita, H., Fujii, T. and Oshima, M., Measurement of Three Dimensional Flow Structure during Microdroplet Formation using Phase-locked Multicolor Confocal Micro-PIV, Proc. Micro Total Analysis Systems 2013, No. 1056, 904-906 (2013).
– reference: [15] Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W., Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device, Anal. Chem., Vol. 77, 933-937 (2005).
– reference: [16] Yang, S., Ündar, A. and Zahn, J. D., A Microfluidic Device for Continuous, Real Time Blood Plasma Separation, Lab Chip, Vol. 6, 871-880 (2006).
– reference: [4] Teh, S-Y., Lin, R., Hung, L-H. and Lee, A. P., Droplet Microfluidics, Lab Chip, Vol. 8, 198-220 (2008).
– reference: [10] Kinoshita, H., Oshima, M., Kaneda, S. and Fujii, T., Confocal Micro PIV Measurement of Internal Flow in a Moving Droplet, Proc. Micro Total Analysis Systems 2005, No. 0192 (2005).
– reference: [6] Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. and Adrian, R. J., A Particle Image Velocimetry System for Microfluidics, Exp. Fluids, Vol. 25, 316-319 (1998).
– reference: [14] Chandran, K. B., Rittgers, S. E., Yoganathan, A. P., Biofluid Mechanics: The Human Circulation, 116-166, Taylor & Francis, CRC Press (2007).
SSID ssib000961619
ssib005901927
ssj0069034
Score 1.8794938
Snippet This paper presents a micro-multiphase flow measurement technique using ‘multicolour confocal micro-particle image velocimetry (PIV)’ by wavelength separation...
SourceID jstage
SourceType Publisher
StartPage 183
SubjectTerms Confocal micro-PIV
Droplet formation
Micro-TAS
Red blood cell
Wavelength separation
Title マイクロ流体デバイス内混相流れの共焦点マイクロPIVによる可視化計測
URI https://www.jstage.jst.go.jp/article/jjmf/28/2/28_183/_article/-char/ja
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 混相流, 2014/06/15, Vol.28(2), pp.183-192
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-5790
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069034
  issn: 0914-2843
  databaseCode: KQ8
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5ivOhBfOKbHOzjxJ2e6e7q4_RmlqgoConkNs7zsGAUSS7esms0YEBByEXwJEHwETxIkoO_Ztwk-Cus7pnZjCFqDCxD0131dXXV9FbV0A_LupZBAuDJzAZJMxs9NLfRKaS2B3GSJlIkLNK7kW_f4ZPT3s0ZNjNy5Gdj1dL8XDyePN13X8lhrIp1aFe9S_Y_LDsExQoso33xiRbG54FsTAKXgEtkYAqU-F5d6FRN_gQJOFEMA0YSeERNEOlWTSBq9tZediVJgCycADPsQv8CQaQiChqAhhjapuAQPzBcjChHE4NHfG4KJeC_Rb17434NpWpwqAvKgHcMPWhkyU1N2xSwBgwx1xJW50l2ay39cQj166aRUCK_JOkQ5epXT5OhAn3UmNRSSXeXHvtv6z61UkFLV9FLSZRnapFF7YPPNLjiJb0ZrKp1Av4uPRApjJIQySeSlfRAFI53ooZTzW82jqfXlpW7Vs0sM-IgCKulbf_VmMyMlZsesRO_-REXsTHAKIeflS4MwLGZKC9hrX0chcZcpg2H5YDbiH2c8l7CvW4VozrjVrsP83EK40Oe384pr2ZBqKlCCiHVDyQN6wa9jTDsYi5zlArO9W0jt-41UgHJMfloHCUndfIx_HjCZcusEBmOuNxrqyW73pAL48guZlX1ikwTJE6dtE5U2d2YX8pyyhrJZk9bxxtnfp6xHhT9d0XvfdFbK_qft74t_Pj-pui_KPqvTeXm4Pni1vr69tsNbCp6y8XCl8Hi1-1nq9u9zSYjTpVi4WPRWyp6Lwev1nZWVwbLKzsflrY2Pp21pjvBVHvSrq45sbsOdSI7chL8H42TlptyT7Ry7oqWE8k4bbkZ43EiMOfHqFxENMdA0klbCWUyhSSXrpcIGrnnrNHZR7PZeWssSVIaQwwReImXRzSiAjLGcmA5j7lLL1iiVE_4uDzLJjyo1S4emvOSdWx3Cly2RueezGdXMJCfi6-aN-AXHyHNwg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%9E%E3%82%A4%E3%82%AF%E3%83%AD%E6%B5%81%E4%BD%93%E3%83%87%E3%83%90%E3%82%A4%E3%82%B9%E5%86%85%E6%B7%B7%E7%9B%B8%E6%B5%81%E3%82%8C%E3%81%AE%E5%85%B1%E7%84%A6%E7%82%B9%E3%83%9E%E3%82%A4%E3%82%AF%E3%83%ADPIV%E3%81%AB%E3%82%88%E3%82%8B%E5%8F%AF%E8%A6%96%E5%8C%96%E8%A8%88%E6%B8%AC&rft.jtitle=%E6%B7%B7%E7%9B%B8%E6%B5%81&rft.au=%E5%A4%A7%E7%9F%B3%2C+%E6%AD%A3%E9%81%93&rft.au=%E6%9C%A8%E4%B8%8B%2C+%E6%99%B4%E4%B9%8B&rft.au=%E5%A4%A7%E5%B3%B6%2C+%E3%81%BE%E3%82%8A&rft.au=%E8%97%A4%E4%BA%95%2C+%E8%BC%9D%E5%A4%AB&rft.date=2014-06-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B7%B7%E7%9B%B8%E6%B5%81%E5%AD%A6%E4%BC%9A&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=28&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.3811%2Fjjmf.28.183&rft.externalDocID=article_jjmf_28_2_28_183_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon