Long-term Relationship between the Earth’s Geomagnetic Intensity and the Resources of Japanese Sardine (Sardinops melanostictus)

It is widely known that sardine have population cycles, and that the peak of their populations comes approximately every 60 years for multiple sardine species in distant ocean regions in the world. Until present, although various environment factors, such as oceanographic and climate conditions, wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Marine Science and Technology Society Vol. 27; no. 2; pp. 15 - 24
Main Authors Tameishi, Hideo, Yagi, Nobuyuki
Format Journal Article
LanguageEnglish
Japanese
Published Advanced Marine Science and Technology Society 31.07.2023
海洋理工学会
Subjects
Online AccessGet full text
ISSN1341-2752
2188-3262
DOI10.14928/amstec.27.2_15

Cover

Abstract It is widely known that sardine have population cycles, and that the peak of their populations comes approximately every 60 years for multiple sardine species in distant ocean regions in the world. Until present, although various environment factors, such as oceanographic and climate conditions, were studied to explain the population cycles of sardine resources, Earth’s outer liquid core has not been the subject of the study. The fluctuation of Earth’s outer liquid core is not able to be directly observed. Available data are those obtained indirectly through the ray of geomagnetism from the Earth’s outer liquid core. In this study, we used the geomagnetic data, and found out the followings: (i) a statistically significant correlation was identified between the Index of Geomagnetic Intensity (GEOM) and the Index of Sardine Scale Deposition Rate (SSDR: from 1840 to 2010) (R2=0.394, p=4.029E-20<0.001) and (ii) a statistically significant correlation was also identified between the Index of GEOM and the Sardine Catch Volume in Japan (SCV: from 1910 to 2010) (R2=0.243 (p=1.61E-07<0.001) .Consequently, it can be argued that the fluctuation of geomagnetic intensity from Earth’s outer liquid core is one of the important factors that explain population cycles of sardine resources. Furthermore, we examined the variation of sardine resources back to 3000 years, 10,000 years and 800,000 years by using fluctuations of the geomagnetic intensity. As a result, in addition to the 60-year population cycle, we have found another population cycle that has population peaks in approximately every 300 years.
AbstractList It is widely known that sardine have population cycles, and that the peak of their populations comes approximately every 60 years for multiple sardine species in distant ocean regions in the world. Until present, although various environment factors, such as oceanographic and climate conditions, were studied to explain the population cycles of sardine resources, Earth’s outer liquid core has not been the subject of the study. The fluctuation of Earth’s outer liquid core is not able to be directly observed. Available data are those obtained indirectly through the ray of geomagnetism from the Earth’s outer liquid core. In this study, we used the geomagnetic data, and found out the followings: (i) a statistically significant correlation was identified between the Index of Geomagnetic Intensity (GEOM) and the Index of Sardine Scale Deposition Rate (SSDR: from 1840 to 2010) (R2=0.394, p=4.029E-20<0.001) and (ii) a statistically significant correlation was also identified between the Index of GEOM and the Sardine Catch Volume in Japan (SCV: from 1910 to 2010) (R2=0.243 (p=1.61E-07<0.001) .Consequently, it can be argued that the fluctuation of geomagnetic intensity from Earth’s outer liquid core is one of the important factors that explain population cycles of sardine resources. Furthermore, we examined the variation of sardine resources back to 3000 years, 10,000 years and 800,000 years by using fluctuations of the geomagnetic intensity. As a result, in addition to the 60-year population cycle, we have found another population cycle that has population peaks in approximately every 300 years.
Author Yagi, Nobuyuki
Tameishi, Hideo
Author_FL 八木 信行
爲石 日出生
Author_FL_xml – sequence: 1
  fullname: 爲石 日出生
– sequence: 2
  fullname: 八木 信行
Author_xml – sequence: 1
  fullname: Tameishi, Hideo
  organization: Graduate School of Agriculture and Life Science, The University of Tokyo
– sequence: 1
  fullname: Yagi, Nobuyuki
  organization: Graduate School of Agriculture and Life Science, The University of Tokyo
BackLink https://cir.nii.ac.jp/crid/1390859779495889024$$DView record in CiNii
BookMark eNo9kM1KAzEUhYMoWGvXbrNwoYup-ZsmWUqptVIQqq6HTOZOJ6WTGSYp0p34Fr6eT-LYiptzD9yPc-BcoFPfeEDoipIxFZqpO1OHCHbM5JhlND1BA0aVSjibsFM0oFzQhMmUnaNRCC4nVCqRCqoH6HPZ-HUSoavxCrYmusaHyrU4h_gO4HGsAM9MF6vvj6-A59DUZu0hOosXPoIPLu6x8cWBW0Fodp2FgJsSP5nWeAiAX0xXOA_45miaNuC6b_JN6FPiLtxeorPSbAOM_u4QvT3MXqePyfJ5vpjeL5MNpZIlxcROrNAFcMVybiiBXBAzkbQUheW0KFOtFNeaFjQtUsghz0kpjWUWhJUAfIiuj7neucy6X6VcE5VqKbXQqVKaMNFj0yO2CdGsIWs7V5tun_UjOLuF7Lh0xmTGDiIJI-z_ayvTZeD5D75tf8s
ContentType Journal Article
Copyright 2023 Advanced Marine Science and Technology Society
Copyright_xml – notice: 2023 Advanced Marine Science and Technology Society
DBID RYH
DOI 10.14928/amstec.27.2_15
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate 地球磁場強度とマイワシSardinops melanostictus資源量の長期変動に関する研究
DocumentTitle_FL 地球磁場強度とマイワシSardinops melanostictus資源量の長期変動に関する研究
EISSN 2188-3262
EndPage 24
ExternalDocumentID article_amstec_27_2_27_270202_article_char_en
GroupedDBID -~X
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
~02
RYH
ID FETCH-LOGICAL-j1172-d6c6c49de382b3a10eb40a671f4dc31df59883991d15d5ebebb0f7ac2ce4c7ee3
ISSN 1341-2752
IngestDate Thu Jun 26 21:44:07 EDT 2025
Wed Sep 03 06:30:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1172-d6c6c49de382b3a10eb40a671f4dc31df59883991d15d5ebebb0f7ac2ce4c7ee3
OpenAccessLink https://www.jstage.jst.go.jp/article/amstec/27/2/27_270202/_article/-char/en
PageCount 10
ParticipantIDs nii_cinii_1390859779495889024
jstage_primary_article_amstec_27_2_27_270202_article_char_en
PublicationCentury 2000
PublicationDate 2023-07-31
PublicationDateYYYYMMDD 2023-07-31
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of Advanced Marine Science and Technology Society
PublicationTitleAlternate Journal of Advanced Marine Science and Technology Society
PublicationTitle_FL 海洋理工学会誌
Journal of Advanced Marine Science and Technology Society
PublicationYear 2023
Publisher Advanced Marine Science and Technology Society
海洋理工学会
Publisher_xml – name: Advanced Marine Science and Technology Society
– name: 海洋理工学会
References Guyodo, Y. & J. Valet, 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399(6733), 249–252.
農林水産省統計情報部,1984–2014.漁業・養殖業生産統計年報.農林水産省
Zupanovich, S., 1986. Causes of fluctuation in sardine catches along the eastern coast of the Adriatic Sea. Anali. Jadronskog Inst., IV, 89–401.
見延庄士郎,2014. 素過程から数十年スケールに及ぶ海洋大気結合変動の解析研 究—2013年度日本海洋学会賞受賞記念論文.海の研究,23(5), 147–169.
Roberts, P. H., Yu, Z. J. & C. T. Russell, 2007. On the 60-year signal fro the core. Geophys. Astrophys. Fluid Dyn., 101(1), 11–35.
浅沼 剛,松岡 教理,2001. ニシン目魚類の分子系統学的研究.弘大農生報,4, 1–15.
福山 薫,1992. 過去200万年における日射量の変化と気候変動モデル.安成哲三・柏谷健二編著,地球環境変動ミランコヴィッチ・サイクル,古今書院,3–24.
友定 彰,2008. 海洋環境からみた1910年代と70年代におけるマイワシ資源の増加.月刊海洋40(3),195–202.
Currie, R. G., 1973a. Geomagnetic line spectra–2 to 70 years. Astrophys. Space Sci., 21(2), 425–438.
Oozeki, Y., Niquen Carranza, M., Takasuka, A., Ayon Dejo, P., Kubota, H., Tam Malagas, J., Okunishi, T., Vasquez Espinoza, L., Gutierrez Aguilar, D., Okamura, H. & R. Guevara Carrasco, 2019. Synchronous multispecies alternations between the northern Humboldt and Kuroshio Current system. Deep Sea Res. Part II Top. Stud. Oceanogr., 159, 11–12.
坪井守夫,1988. 本州・四国・九州を一周したマイワシ主産卵場(3),東海区水研業績C集,さかな,40, 37–49.
Baumgartner, T. R., Andy, S. & B. Vicenteferreira, 1992. Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, Calfornia. CCOFI Rep., 33, 24–40.
Knudsen, M. F., Henderson, G. M., Frank, M., Niocaill, C. M. & P. W. Kubik, 2008. In-phase anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the Iceland Basin geomagnetic excursion. Earth Planet. Sci. Lett., 265(3–4), 588–599.
高須賀明典,2007. 気候変動からマイワシ資源変動に至る生物過程.日本水産学会誌,73(4), 758–762.
Cushing, D. H., 1975. Marine Ecology and Fisheries. Cambridge University Press, Cambridge.
地磁気観測所2020. 気象庁ホームページ,http://www.kakioka-jma.go.jp
中井甚二郎,1938. マイワシの鰓耙の構造と食餌との関係について.水産研究誌,33, 547–561.
野口真紀,千葉早苗,田所和明,2018. 北太平洋における10年規模の気候変動と海洋低次生態系の応答.海の研究,27(1), 43–57.
Chao, B. F., Dehant, V. M., Gross, R. S., Ray, R. D., Salstein, D. A., Walkins, M. M. & C. R. Wilson, 2000. Space geodesy monitors mass transports in global geophysical fluids. Eos T. AGU, 81(22), 247–250.
Chavez, F. P., Ryan, J. & S. E. Luch-Cota, 2003. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science, 299(5604), 217–221.
坪井守夫,1987-a. 本州・四国・九州を一周したマイワシ主産卵場(1),東海区水研業績C集,さかな,38, 2–18.
Currie, R. G., 1973b. The 60year spectral line in length of day fluctuation. S. Afr. J. Sci., 69, 180–182.
Hyodo, M., Biswas, D. K., Noda, T., Tomioka, N., Mishima, T., Itota, C. & H. Sato, 2006. Millennial to submillennial-scale features of the Matuyama-Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan. J. Geophys. Res., 111(B2), B02103.
Cronin, T. M. & H. J. Dowsett (eds.), 1991. Pliocene climate. Quat. Sci. Rev., 10(2/3), 1–296.
Koizumi, I., 1985. Late Neogene paleoceanography in the western North Pacific. In Heath, G. R., Burckle, L. H., et al. (eds.) Init. Repts. DSDP, 86, 429–438.
漁業情報サービスセンター,2021. つながる情報,おさかなひろば.http://www.osakana-hiroba.jafic.jp/(令和3年(2021)2月1日最終アクセス)
小泉 格,2011. 珪藻古海洋学.東京大学出版会,東京,67–68.
杉本隆成,黒田一紀,坪井守夫,加 三千宣,2005. 資源変動の歴史的変遷—古文書と堆積物コアに基づく海洋環境と生物生産の推定.月刊海洋,422, 563–567.
Braginsky, S. I., 1972. Analytic description of the geomagnetic field of past epochs and determination of the spectrum of waves in the core of the Earth, II. Geomagn. Aeron., 14, 947–957.
友定 彰,1988. 水温の長期変動とマイワシ漁獲量との関係.水産海洋研究会報,52(4), 332–333.
Kitaba, I., Hyodo, M., Katoh, S., Dettman, D. L. & H. Sato, 2013. Mid-latitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA, 110(4), 1215–1220.
Hyodo, M., Matsu’ura, S., Kamishima, Y., Kondo, M., Takeshita, Y., Kitaba, I., Danhara, T., Aziz, F., Kurniawan, I. & H. Kumai, 2011. High-resolution record of the Matuyama-Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran Dome, Indonesia. Proc. Natl. Acad. Sci. USA, 108(49), 19563–19568.
Tameishi, H., Takahashi, H. & H. Shinomiya, 1989. The relationship between long term variations in the stock of the sardine sardinops melannaticta and the velocity of earth rotation. Proceeding of the International Symposium, Long-term Variability of Pelagic Fish Populations and Their Environment, 311–318.
Holme, R. & O. de Viron, 2005. Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys. J. Int., 160(2), 435–439.
Kawasaki, T., 1983. Why do some pelagic fishes have wide fluctuations in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. FAO Fish. Rep., 219, 1065–1080.
爲石日出生,八木信行,清水久芳,2022. 地球自転速度とマイワシSardinops melanostictus漁獲量の長期変動に関する研究.海洋理工学会誌,27(1), 1–14.
Kuwae, M., Yamamoto, M., Sagawa, T., Ikehara, K., Irino, T., Takemura, K., Takeoka, H. & T. Sugimoto, 2017. Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate-fish linkages during the late Holocene. Prog. Oceanogr., 159, 86–98.
Courtillot, V., Gallet, Y. I., Mouël, J. L., Fluteau, F. & A. Genevey, 2007. Are there connection between the Earth’s magnetic field and climate? Earth Planet. Sci. Lett., 253(3–4), 328–339.
Yasuda, I., Sugisaki, H., Watanabe, Y., Minobe, S. & Y. Oozeki, 2001. Interdecadal variations in Japanese sardine and ocean/climate. Fish. Oceanogr., 8(1), 18–24.
青木一郎,小松輝久,1992. ニューラルネットによるマイワシ未成魚漁獲量の測.水産海洋研究,56, 113–120.
坪井守夫,1987-b. 本州・四国・九州を一周したマイワシ主産卵場(2),東海区水研業績C集,さかな,39, 7–24.
平本紀久雄,1996. イワシの自然誌「海の米」の生存戦略.中公新書1310, 中央公論社,東京,154–155.
de Souza Moraes, L. E., Marcolino Gherardi, D. F., Katsuragawa, M. & E. Tavares Paes, 2012. Brazilian sardine (Sardinella brasiliensis Steindachner, 1879) spawning and nursery habitats: spatial-scale partitioning and multiscale relationship with thermohaline descriptors. ICES J. Mar. Sci., 69(6), 939–952.
References_xml – reference: Braginsky, S. I., 1972. Analytic description of the geomagnetic field of past epochs and determination of the spectrum of waves in the core of the Earth, II. Geomagn. Aeron., 14, 947–957.
– reference: 爲石日出生,八木信行,清水久芳,2022. 地球自転速度とマイワシSardinops melanostictus漁獲量の長期変動に関する研究.海洋理工学会誌,27(1), 1–14.
– reference: Hyodo, M., Matsu’ura, S., Kamishima, Y., Kondo, M., Takeshita, Y., Kitaba, I., Danhara, T., Aziz, F., Kurniawan, I. & H. Kumai, 2011. High-resolution record of the Matuyama-Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran Dome, Indonesia. Proc. Natl. Acad. Sci. USA, 108(49), 19563–19568.
– reference: 友定 彰,2008. 海洋環境からみた1910年代と70年代におけるマイワシ資源の増加.月刊海洋40(3),195–202.
– reference: Courtillot, V., Gallet, Y. I., Mouël, J. L., Fluteau, F. & A. Genevey, 2007. Are there connection between the Earth’s magnetic field and climate? Earth Planet. Sci. Lett., 253(3–4), 328–339.
– reference: Yasuda, I., Sugisaki, H., Watanabe, Y., Minobe, S. & Y. Oozeki, 2001. Interdecadal variations in Japanese sardine and ocean/climate. Fish. Oceanogr., 8(1), 18–24.
– reference: Guyodo, Y. & J. Valet, 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399(6733), 249–252.
– reference: 野口真紀,千葉早苗,田所和明,2018. 北太平洋における10年規模の気候変動と海洋低次生態系の応答.海の研究,27(1), 43–57.
– reference: 福山 薫,1992. 過去200万年における日射量の変化と気候変動モデル.安成哲三・柏谷健二編著,地球環境変動ミランコヴィッチ・サイクル,古今書院,3–24.
– reference: Zupanovich, S., 1986. Causes of fluctuation in sardine catches along the eastern coast of the Adriatic Sea. Anali. Jadronskog Inst., IV, 89–401.
– reference: 青木一郎,小松輝久,1992. ニューラルネットによるマイワシ未成魚漁獲量の測.水産海洋研究,56, 113–120.
– reference: 見延庄士郎,2014. 素過程から数十年スケールに及ぶ海洋大気結合変動の解析研 究—2013年度日本海洋学会賞受賞記念論文.海の研究,23(5), 147–169.
– reference: Tameishi, H., Takahashi, H. & H. Shinomiya, 1989. The relationship between long term variations in the stock of the sardine sardinops melannaticta and the velocity of earth rotation. Proceeding of the International Symposium, Long-term Variability of Pelagic Fish Populations and Their Environment, 311–318.
– reference: Chavez, F. P., Ryan, J. & S. E. Luch-Cota, 2003. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science, 299(5604), 217–221.
– reference: 友定 彰,1988. 水温の長期変動とマイワシ漁獲量との関係.水産海洋研究会報,52(4), 332–333.
– reference: Chao, B. F., Dehant, V. M., Gross, R. S., Ray, R. D., Salstein, D. A., Walkins, M. M. & C. R. Wilson, 2000. Space geodesy monitors mass transports in global geophysical fluids. Eos T. AGU, 81(22), 247–250.
– reference: Kuwae, M., Yamamoto, M., Sagawa, T., Ikehara, K., Irino, T., Takemura, K., Takeoka, H. & T. Sugimoto, 2017. Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate-fish linkages during the late Holocene. Prog. Oceanogr., 159, 86–98.
– reference: Currie, R. G., 1973b. The 60year spectral line in length of day fluctuation. S. Afr. J. Sci., 69, 180–182.
– reference: Oozeki, Y., Niquen Carranza, M., Takasuka, A., Ayon Dejo, P., Kubota, H., Tam Malagas, J., Okunishi, T., Vasquez Espinoza, L., Gutierrez Aguilar, D., Okamura, H. & R. Guevara Carrasco, 2019. Synchronous multispecies alternations between the northern Humboldt and Kuroshio Current system. Deep Sea Res. Part II Top. Stud. Oceanogr., 159, 11–12.
– reference: 高須賀明典,2007. 気候変動からマイワシ資源変動に至る生物過程.日本水産学会誌,73(4), 758–762.
– reference: 坪井守夫,1987-b. 本州・四国・九州を一周したマイワシ主産卵場(2),東海区水研業績C集,さかな,39, 7–24.
– reference: 杉本隆成,黒田一紀,坪井守夫,加 三千宣,2005. 資源変動の歴史的変遷—古文書と堆積物コアに基づく海洋環境と生物生産の推定.月刊海洋,422, 563–567.
– reference: 平本紀久雄,1996. イワシの自然誌「海の米」の生存戦略.中公新書1310, 中央公論社,東京,154–155.
– reference: Knudsen, M. F., Henderson, G. M., Frank, M., Niocaill, C. M. & P. W. Kubik, 2008. In-phase anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the Iceland Basin geomagnetic excursion. Earth Planet. Sci. Lett., 265(3–4), 588–599.
– reference: Hyodo, M., Biswas, D. K., Noda, T., Tomioka, N., Mishima, T., Itota, C. & H. Sato, 2006. Millennial to submillennial-scale features of the Matuyama-Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan. J. Geophys. Res., 111(B2), B02103.
– reference: Holme, R. & O. de Viron, 2005. Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys. J. Int., 160(2), 435–439.
– reference: Kitaba, I., Hyodo, M., Katoh, S., Dettman, D. L. & H. Sato, 2013. Mid-latitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA, 110(4), 1215–1220.
– reference: 中井甚二郎,1938. マイワシの鰓耙の構造と食餌との関係について.水産研究誌,33, 547–561.
– reference: 漁業情報サービスセンター,2021. つながる情報,おさかなひろば.http://www.osakana-hiroba.jafic.jp/(令和3年(2021)2月1日最終アクセス).
– reference: 小泉 格,2011. 珪藻古海洋学.東京大学出版会,東京,67–68.
– reference: 坪井守夫,1987-a. 本州・四国・九州を一周したマイワシ主産卵場(1),東海区水研業績C集,さかな,38, 2–18.
– reference: 坪井守夫,1988. 本州・四国・九州を一周したマイワシ主産卵場(3),東海区水研業績C集,さかな,40, 37–49.
– reference: Cronin, T. M. & H. J. Dowsett (eds.), 1991. Pliocene climate. Quat. Sci. Rev., 10(2/3), 1–296.
– reference: 地磁気観測所2020. 気象庁ホームページ,http://www.kakioka-jma.go.jp/
– reference: Currie, R. G., 1973a. Geomagnetic line spectra–2 to 70 years. Astrophys. Space Sci., 21(2), 425–438.
– reference: 農林水産省統計情報部,1984–2014.漁業・養殖業生産統計年報.農林水産省.
– reference: Cushing, D. H., 1975. Marine Ecology and Fisheries. Cambridge University Press, Cambridge.
– reference: Baumgartner, T. R., Andy, S. & B. Vicenteferreira, 1992. Reconstruction of the history of Pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara Basin, Calfornia. CCOFI Rep., 33, 24–40.
– reference: Kawasaki, T., 1983. Why do some pelagic fishes have wide fluctuations in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. FAO Fish. Rep., 219, 1065–1080.
– reference: Koizumi, I., 1985. Late Neogene paleoceanography in the western North Pacific. In Heath, G. R., Burckle, L. H., et al. (eds.) Init. Repts. DSDP, 86, 429–438.
– reference: 浅沼 剛,松岡 教理,2001. ニシン目魚類の分子系統学的研究.弘大農生報,4, 1–15.
– reference: de Souza Moraes, L. E., Marcolino Gherardi, D. F., Katsuragawa, M. & E. Tavares Paes, 2012. Brazilian sardine (Sardinella brasiliensis Steindachner, 1879) spawning and nursery habitats: spatial-scale partitioning and multiscale relationship with thermohaline descriptors. ICES J. Mar. Sci., 69(6), 939–952.
– reference: Roberts, P. H., Yu, Z. J. & C. T. Russell, 2007. On the 60-year signal fro the core. Geophys. Astrophys. Fluid Dyn., 101(1), 11–35.
SSID ssib017845419
ssj0003306234
ssib036255190
Score 1.8445063
Snippet It is widely known that sardine have population cycles, and that the peak of their populations comes approximately every 60 years for multiple sardine species...
SourceID nii
jstage
SourceType Publisher
StartPage 15
SubjectTerms Diatom temperature index
Earth’s liquid outer core
Geomagnetic intensity
Sardine scale deposition rate
Title Long-term Relationship between the Earth’s Geomagnetic Intensity and the Resources of Japanese Sardine (Sardinops melanostictus)
URI https://www.jstage.jst.go.jp/article/amstec/27/2/27_270202/_article/-char/en
https://cir.nii.ac.jp/crid/1390859779495889024
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Marine Science and Technology Society, 2023/07/31, Vol.27(2), pp.15-24
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2188-3262
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306234
  issn: 1341-2752
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELa25cIFgQBRoMgHDqAqy9px4kTiglBRVSgSUiv1FvkvqyzapGI3h3JCvAWPB0_CTOxks6IHFi5WlGRjb-bLzOfxzJiQ5-UMcMIS0H65NpGwsYjADJkIuX2upGRWYe7w2cf05EKcXiaXk8nPUdRSu9ZT8_XGvJJ_kSqcA7liluwOkh0eCifgGOQLLUgY2r-S8YemnkeoWzcxbePYK-SUxwpDAENEQ75CH_hSzWtMXTwK4evr6yGMsnfmd_Edp2BHcX9K9BrbQEb9YXO1OlpCj3WDVZ7X7ar3J9zAcvsYgzOFeYaDLsEeN279Pnh040dYOnSOdYaxsq4ZlJOaV365SbfX7edq7LTgce8N7WG2e99ePYPNjbj0NW-nrjsHHCWLgIRu6XRfbyBgl48UtM8dDabeZ2__YUREzjEzQi3hOzNTLqe86H-2VZk7yL3wNxZcFrxrJFBwXvRXMXsOwLpHbnGZprjJxvtPg8pjMhPJqKIe0AmgsGHhEslEDFM67mMj-v8eClThKF9tjxFY1ALmFFgsYq-uqhFROr9L7gTZ0zd-YPfIZKHuk-8DVOkYqjRAlQL4aAfVX99-rOgIpHQAKQWxdfcNIKVNSXuQ0gBS-mKAKN2C6MsH5OLd8fnbkyhs_xEtGNDqyKYmNSK3Ls64jhWbOS1mKpWsFNbEzJZJngG9z5lliU1AGWk9K6Uy3DhhpHPxQ7JfN7V7RKiVpVCx0wmH6TNPmbYZkDSZWc2dYi4_IK_9iyuufI2XYifZHpBDeN2FqbCFKRUWDZRg6PIkw2V88fj_Hv-E3N58Q0_J_vpL6w6BCq_1sw5MvwGewbzt
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+Relationship+between+the+Earth%E2%80%99s+Geomagnetic+Intensity+and+the+Resources+of+Japanese+Sardine+%28Sardinops+melanostictus%29&rft.jtitle=Journal+of+Advanced+Marine+Science+and+Technology+Society&rft.au=Tameishi%2C+Hideo&rft.au=Yagi%2C+Nobuyuki&rft.date=2023-07-31&rft.pub=Advanced+Marine+Science+and+Technology+Society&rft.issn=1341-2752&rft.eissn=2188-3262&rft.volume=27&rft.issue=2&rft.spage=15&rft.epage=24&rft_id=info:doi/10.14928%2Famstec.27.2_15&rft.externalDocID=article_amstec_27_2_27_270202_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-2752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-2752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-2752&client=summon