A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination

The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared vide...

Full description

Saved in:
Bibliographic Details
Published inChinese Control and Decision Conference pp. 2430 - 2434
Main Authors Zhou, Jiayi, Wang, Xiaogang, Zhan, Binghan, Wang, Min, Yan, Jiacai
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.05.2025
Subjects
Online AccessGet full text
ISSN1948-9447
DOI10.1109/CCDC65474.2025.11090655

Cover

Abstract The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%.
AbstractList The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%.
Author Zhou, Jiayi
Wang, Xiaogang
Wang, Min
Zhan, Binghan
Yan, Jiacai
Author_xml – sequence: 1
  givenname: Jiayi
  surname: Zhou
  fullname: Zhou, Jiayi
  email: zhoujiayi_ls@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 2
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
  email: wxg_zf@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 3
  givenname: Binghan
  surname: Zhan
  fullname: Zhan, Binghan
  email: zbh_kkkzm@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 4
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  email: wangmin_mywm@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 5
  givenname: Jiacai
  surname: Yan
  fullname: Yan, Jiacai
  email: 15729851920@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
BookMark eNo10MlOwzAUBVCDQKIt_QMk_AMudjwlyzZlklpANPvKiZ-pUWJXiQHx91CG1ZPuvTqLN0YnIQZA6JLRGWO0uCrLZamk0GKW0Uz-ZFRJeYSmhS5yzplkVCp5jEasEDkphNBnaDwMr5QqxSkdoY85fgbTksp3gNdvbfLkCfohBrzZm-QjqaDbx960eAE78-5jj5eQoPmuAl5D2kWLfcAP_mWX0sHYNBBgwAszgMWHzY-5jhZaXMau9uHAhnN06kw7wPTvTlB1c12Vd2T1eHtfzlfEFzwR11hua6prCTpzljW5y6CWwgkqhLM1OGWNMdaClTrPqROglWR5zbRRzgKfoItf1gPAdt_7zvSf2_8_8S8brWGO
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090655
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 2434
ExternalDocumentID 11090655
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61902268
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3
PageCount 5
ParticipantIDs ieee_primary_11090655
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9117664
Snippet The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of...
SourceID ieee
SourceType Publisher
StartPage 2430
SubjectTerms Behavioral sciences
Classification algorithms
DeepSort
Location awareness
Multi-person behavior detection
Near-infrared videos
Object detection
Object tracking
Pedestrians
Real-time systems
SlowFast
Surveillance
Thermal analysis
Videos
YOLOv8
Title A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination
URI https://ieeexplore.ieee.org/document/11090655
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPiaLm2TtH3U6hjCxnAT9jaaGwxHJ6ND8NebL229geBbKUlbkvR8uXznHIRuuIvbUqqCWAeLhEWJIIVSEQmlBF9zxZkENvJoLIbP7HHO5w1Z3XNhjDE--cwEcOnP8vVabWGrrA_qmC5k8g7qJKmoyVot7ArQjmoSuFyxfp7f52CsC_smEQ_aqj9MVHwMGeyjcfv2OnXkJdhWMlDvv4QZ__15B6j3RdfDk89AdIh2THmE9r4pDR6jt1v85KaEBBgf2JNuycTPtfHUp1STWS1RtcKNYOIG35vKp2mVeORdpvGyxGNYyoMdPZ4qAEl854KgxlDGPxOc1VbYYYxbb_su76HZ4GGWD0njuUCWWVwRq3SsJU0kN0lkdahSGxnJmWWUMaulsUIXBWCidr96Si0zieBhKsOkEFab-AR1y3VpThGmhYqpojoDDUJe0NQmIlMOX92AiCKbnaEeNOHitVbVWLStd_7H_Qu0Cz0JJ_ehuETdarM1V25CUMlrPxA-APZItv8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAGB20HtSLW8XdOXidNMtMlqO2StU2FBuht5LZoFhSKSmCv975JokbCN5CmEnCzOR9s3zvPYSumInbnIucaAOLhPpRSHIhfOJxDr7mglEObORhGvaf6cOETWqyuuXCKKVs8ply4NKe5cuFWMFWWQfUMU3IZOtog1FKWUXXaoA3BPWoOoXLFOx0u70uWOvCzonPnKbyDxsVG0XudlDavL9KHnlxViV3xPsvacZ_f-Auan8R9vDoMxTtoTVV7KPtb1qDB-jtGj-ZSSEBzge2tFsysrNtPLZJ1SSrRKrmuJZMXOKeKm2iVoGH1mcazwqcwmIeDOnxWABM4hsTBiWGMvaZ4K02xwZlzIrbdnobZXe3WbdPatcFMkuCkmghA8ndiDMV-Vp6Ita-4oxq6lKqJVc6lHkOqCjNzx67mqooZF7MvSgPtVTBIWoVi0IdIezmInCFKxNQIWS5G-soTIRBWDMkfF8nx6gNTTh9rXQ1pk3rnfxx_xJt9rPhYDq4Tx9P0Rb0Kpzje-EZapXLlTo304OSX9hB8QG2BrpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=A+Real-Time+Multi-Person+Spatio-Temporal+Behavior+Detection+Method+in+Nighttime+Scenes+Based+on+Multi-Model+Combination&rft.au=Zhou%2C+Jiayi&rft.au=Wang%2C+Xiaogang&rft.au=Zhan%2C+Binghan&rft.au=Wang%2C+Min&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=2430&rft.epage=2434&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090655&rft.externalDocID=11090655