A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination
The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared vide...
Saved in:
| Published in | Chinese Control and Decision Conference pp. 2430 - 2434 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
16.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1948-9447 |
| DOI | 10.1109/CCDC65474.2025.11090655 |
Cover
| Abstract | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%. |
|---|---|
| AbstractList | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%. |
| Author | Zhou, Jiayi Wang, Xiaogang Wang, Min Zhan, Binghan Yan, Jiacai |
| Author_xml | – sequence: 1 givenname: Jiayi surname: Zhou fullname: Zhou, Jiayi email: zhoujiayi_ls@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 2 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang email: wxg_zf@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 3 givenname: Binghan surname: Zhan fullname: Zhan, Binghan email: zbh_kkkzm@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 4 givenname: Min surname: Wang fullname: Wang, Min email: wangmin_mywm@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 5 givenname: Jiacai surname: Yan fullname: Yan, Jiacai email: 15729851920@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 |
| BookMark | eNo10MlOwzAUBVCDQKIt_QMk_AMudjwlyzZlklpANPvKiZ-pUWJXiQHx91CG1ZPuvTqLN0YnIQZA6JLRGWO0uCrLZamk0GKW0Uz-ZFRJeYSmhS5yzplkVCp5jEasEDkphNBnaDwMr5QqxSkdoY85fgbTksp3gNdvbfLkCfohBrzZm-QjqaDbx960eAE78-5jj5eQoPmuAl5D2kWLfcAP_mWX0sHYNBBgwAszgMWHzY-5jhZaXMau9uHAhnN06kw7wPTvTlB1c12Vd2T1eHtfzlfEFzwR11hua6prCTpzljW5y6CWwgkqhLM1OGWNMdaClTrPqROglWR5zbRRzgKfoItf1gPAdt_7zvSf2_8_8S8brWGO |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC65474.2025.11090655 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331510565 |
| EISSN | 1948-9447 |
| EndPage | 2434 |
| ExternalDocumentID | 11090655 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61902268 funderid: 10.13039/501100001809 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:00:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11090655 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-16 |
| PublicationDateYYYYMMDD | 2025-05-16 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.9117664 |
| Snippet | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2430 |
| SubjectTerms | Behavioral sciences Classification algorithms DeepSort Location awareness Multi-person behavior detection Near-infrared videos Object detection Object tracking Pedestrians Real-time systems SlowFast Surveillance Thermal analysis Videos YOLOv8 |
| Title | A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination |
| URI | https://ieeexplore.ieee.org/document/11090655 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPiaLm2TtH3U6hjCxnAT9jaaGwxHJ6ND8NebL229geBbKUlbkvR8uXznHIRuuIvbUqqCWAeLhEWJIIVSEQmlBF9zxZkENvJoLIbP7HHO5w1Z3XNhjDE--cwEcOnP8vVabWGrrA_qmC5k8g7qJKmoyVot7ArQjmoSuFyxfp7f52CsC_smEQ_aqj9MVHwMGeyjcfv2OnXkJdhWMlDvv4QZ__15B6j3RdfDk89AdIh2THmE9r4pDR6jt1v85KaEBBgf2JNuycTPtfHUp1STWS1RtcKNYOIG35vKp2mVeORdpvGyxGNYyoMdPZ4qAEl854KgxlDGPxOc1VbYYYxbb_su76HZ4GGWD0njuUCWWVwRq3SsJU0kN0lkdahSGxnJmWWUMaulsUIXBWCidr96Si0zieBhKsOkEFab-AR1y3VpThGmhYqpojoDDUJe0NQmIlMOX92AiCKbnaEeNOHitVbVWLStd_7H_Qu0Cz0JJ_ehuETdarM1V25CUMlrPxA-APZItv8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAGB20HtSLW8XdOXidNMtMlqO2StU2FBuht5LZoFhSKSmCv975JokbCN5CmEnCzOR9s3zvPYSumInbnIucaAOLhPpRSHIhfOJxDr7mglEObORhGvaf6cOETWqyuuXCKKVs8ply4NKe5cuFWMFWWQfUMU3IZOtog1FKWUXXaoA3BPWoOoXLFOx0u70uWOvCzonPnKbyDxsVG0XudlDavL9KHnlxViV3xPsvacZ_f-Auan8R9vDoMxTtoTVV7KPtb1qDB-jtGj-ZSSEBzge2tFsysrNtPLZJ1SSrRKrmuJZMXOKeKm2iVoGH1mcazwqcwmIeDOnxWABM4hsTBiWGMvaZ4K02xwZlzIrbdnobZXe3WbdPatcFMkuCkmghA8ndiDMV-Vp6Ita-4oxq6lKqJVc6lHkOqCjNzx67mqooZF7MvSgPtVTBIWoVi0IdIezmInCFKxNQIWS5G-soTIRBWDMkfF8nx6gNTTh9rXQ1pk3rnfxx_xJt9rPhYDq4Tx9P0Rb0Kpzje-EZapXLlTo304OSX9hB8QG2BrpM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=A+Real-Time+Multi-Person+Spatio-Temporal+Behavior+Detection+Method+in+Nighttime+Scenes+Based+on+Multi-Model+Combination&rft.au=Zhou%2C+Jiayi&rft.au=Wang%2C+Xiaogang&rft.au=Zhan%2C+Binghan&rft.au=Wang%2C+Min&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=2430&rft.epage=2434&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090655&rft.externalDocID=11090655 |