DSANA: Dual Sparse Attention Driven Neural Additive Framework for Comprehensive Stroke Prediction

In today's advancing medical diagnostics, accurately predicting stroke risk is crucial, due to the lack of effective prediction stroke remains a leading cause of global mortality and disability. Existing methods work on the linear relations of the demographic records of the subjects for stroke...

Full description

Saved in:
Bibliographic Details
Published in2025 National Conference on Communications (NCC) pp. 1 - 6
Main Authors Prapurna, Inapanuri Pavani, Reddy, Srikireddy Dhanunjay, Reddy Bollu, Tharun Kumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.03.2025
Subjects
Online AccessGet full text
ISSN2993-2645
DOI10.1109/NCC63735.2025.10983795

Cover

Abstract In today's advancing medical diagnostics, accurately predicting stroke risk is crucial, due to the lack of effective prediction stroke remains a leading cause of global mortality and disability. Existing methods work on the linear relations of the demographic records of the subjects for stroke severity assessment. Moreover, this paper implements a novel Dual Sparse Attention Driven Neural Additive Network (DSANA) model to effectively analyze non-linear relationships through a multi-output representation, ensuring accurate prediction and capturing variability and distribution parameters (Location, Scale, and Shape), while preserving the interpretability of stroke prediction. Further, enhancement is incorporated with the concatenation of the DSANA model with Integrated Gradient (IG) for accurate stroke risk prediction and severity assessment. DSANA model is validated on the publicly available stroke healthcare dataset with 5110 patient profiles. Prediction metrics of the model demonstrated its efficacy with an accuracy of 98.54 % and a mean improvement over previous works with low-performance variance.
AbstractList In today's advancing medical diagnostics, accurately predicting stroke risk is crucial, due to the lack of effective prediction stroke remains a leading cause of global mortality and disability. Existing methods work on the linear relations of the demographic records of the subjects for stroke severity assessment. Moreover, this paper implements a novel Dual Sparse Attention Driven Neural Additive Network (DSANA) model to effectively analyze non-linear relationships through a multi-output representation, ensuring accurate prediction and capturing variability and distribution parameters (Location, Scale, and Shape), while preserving the interpretability of stroke prediction. Further, enhancement is incorporated with the concatenation of the DSANA model with Integrated Gradient (IG) for accurate stroke risk prediction and severity assessment. DSANA model is validated on the publicly available stroke healthcare dataset with 5110 patient profiles. Prediction metrics of the model demonstrated its efficacy with an accuracy of 98.54 % and a mean improvement over previous works with low-performance variance.
Author Prapurna, Inapanuri Pavani
Reddy Bollu, Tharun Kumar
Reddy, Srikireddy Dhanunjay
Author_xml – sequence: 1
  givenname: Inapanuri Pavani
  surname: Prapurna
  fullname: Prapurna, Inapanuri Pavani
  email: i_pp@ece.iitr.ac.in
  organization: Indian Institute of Technology,Department of ECE,Roorkee,India
– sequence: 2
  givenname: Srikireddy Dhanunjay
  surname: Reddy
  fullname: Reddy, Srikireddy Dhanunjay
  email: sd_reddy@ece.iitr.ac.in
  organization: Indian Institute of Technology,Department of ECE,Roorkee,India
– sequence: 3
  givenname: Tharun Kumar
  surname: Reddy Bollu
  fullname: Reddy Bollu, Tharun Kumar
  email: tharun.reddy@ece.iitr.ac.in
  organization: Indian Institute of Technology,Department of ECE,Roorkee,India
BookMark eNo1kN9KwzAYxaMoOOfeQCQv0Jk__ZLFu9I6FUYVuvuRLl8wbGtL2im-_TrUq3M4Pzhwzi25atoGCXngbM45M49lniupJcwFEzAfk4XUBi7IzOjRSg5SMQ6XZCKMkYlQKdyQWd-HmgGAMCmHCbFFlZXZEy2Odk-rzsYeaTYM2AyhbWgRwxc2tMRjHHHmXBjGgC6jPeB3G3fUt5Hm7aGL-IlNf2bVENsd0o-ILmzPJXfk2tt9j7M_nZL18nmdvyar95e3PFslwcgh8VsrtOLcaMCUCSmcVzVzdpxm01rqhXEKlPawMF54IVxdA3dGK-Ud1tzJKbn_rQ2IuOliONj4s_k_RZ4AXFtYqQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCC63735.2025.10983795
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331536015
EISSN 2993-2645
EndPage 6
ExternalDocumentID 10983795
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i93t-fca27611975e40232df6b0da202a4b3789d6567f589f2f22dbb51d9766fdeb1d3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:53:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-fca27611975e40232df6b0da202a4b3789d6567f589f2f22dbb51d9766fdeb1d3
PageCount 6
ParticipantIDs ieee_primary_10983795
PublicationCentury 2000
PublicationDate 2025-March-6
PublicationDateYYYYMMDD 2025-03-06
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-6
  day: 06
PublicationDecade 2020
PublicationTitle 2025 National Conference on Communications (NCC)
PublicationTitleAbbrev NCC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib055529415
Score 1.9042474
Snippet In today's advancing medical diagnostics, accurately predicting stroke risk is crucial, due to the lack of effective prediction stroke remains a leading cause...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Additives
Brain modeling
Brain Stroke Prediction
Inherent Inter- pretability
Integrated Gradient
Neural Additive Model
Physiology
Predictive models
Prognostics and health management
Shape
Stroke (medical condition)
Transformers
Visualization
Title DSANA: Dual Sparse Attention Driven Neural Additive Framework for Comprehensive Stroke Prediction
URI https://ieeexplore.ieee.org/document/10983795
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-tW9IkjbeyOYZgETZht5E0CcpkGyW9-Nf7kq6KguCt9FfKS_ve-_q-7wWh24gaNK8SoZRJMqGrJDdaJEqoIL0mgyz20nsq-fQle1ywxU6sHrUw1tpIPrNp2Iy1fLOpmvCrDL5wCXhKsn20L3LeirW6l4cxRiREo50KGE69K0cjTgVlgAIJS7uLfyyjEqPI5BCV3fgteWSVNl6n1cev1oz_fsAj1P8W7OHnr1B0jPbs-gSp8awoi3s8btQ7nm0BwVpceN_yG_G4Dn4Oh-YccLgwJpKI8KQja2HIZnHwFrV9bUnueObrzSoMFIo74SZ9NJ88zEfTZLeiQvImqU9cpYjgoXDILOBGSozjemAU2EdlmopcGkjvhGO5dMQRYrRmQwMJC3cGfLqhp6i33qztGcLMhDYxGgCNc5klUglhmavskGqaD0x2jvrBPMtt2zNj2Vnm4o_9l-ggzFJkd_Er1PN1Y68h3Ht9E6f5Ez7UqkM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3e_Ca2O4jm3gLraVqG4RW6K3sZndRKm0JycVf7-ymURQEbyHPZTaZmS_zfbMI3XjUoKI8EFLqgAmVB7FWIpBCOuk16TDfS2-cRcMX9jjjs41Y3WthjDGefGZCt-lr-XqVV-5XGXzhCeCphG-jHc4Y47Vcq3l9OOckgXi00QHDybdZrxdRQTngQMLD5vIfC6n4ODLYR1kzgpo-sgirUoX5x6_mjP8e4gFqf0v28PNXMDpEW2Z5hGR_kmbpHe5X8h1P1oBhDU7LsmY44n7hPB127TngcKq1pxHhQUPXwpDPYucvCvNa09zxpCxWC_cgV95xN2mj6eB-2hsGmzUVgreEloHNJRGRKx1yA8iREm0j1dES7COZoiJONCR4wvI4scQSopXiXQ0pS2Q1eHVNj1FruVqaE4S5do1iFEAaa5khiRTCcJubLlU07mh2itrOPPN13TVj3ljm7I_912h3OB2P5qOH7Okc7bkZ81yv6AK1yqIylxD8S3Xlp_wTWEetkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+National+Conference+on+Communications+%28NCC%29&rft.atitle=DSANA%3A+Dual+Sparse+Attention+Driven+Neural+Additive+Framework+for+Comprehensive+Stroke+Prediction&rft.au=Prapurna%2C+Inapanuri+Pavani&rft.au=Reddy%2C+Srikireddy+Dhanunjay&rft.au=Reddy+Bollu%2C+Tharun+Kumar&rft.date=2025-03-06&rft.pub=IEEE&rft.eissn=2993-2645&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNCC63735.2025.10983795&rft.externalDocID=10983795