A systematic Study on the Usage of Various Attention Mechanisms for Plant Leaf Disease Detection
Plant diseases significantly impact the agriculture sector, resulting in substantial productivity and economic losses. Effective plant health monitoring systems are crucial for sustainable agriculture, and predicting various diseases is a critical task. This work aims to provide accessible and infor...
Saved in:
| Published in | 2024 Asian Conference on Intelligent Technologies (ACOIT) pp. 1 - 6 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
06.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9798350374933 |
| DOI | 10.1109/ACOIT62457.2024.10940036 |
Cover
| Abstract | Plant diseases significantly impact the agriculture sector, resulting in substantial productivity and economic losses. Effective plant health monitoring systems are crucial for sustainable agriculture, and predicting various diseases is a critical task. This work aims to provide accessible and informative visual data to farmers, enabling proactive decision-making and timely action. Deep learning models, particularly vision transformers with attention mechanisms, have performed well in numerous computer vision tasks. This comprehensive review provides an in-depth exploration of attention mechanisms in vision transformers, examining their role in enhancing image recognition, object detection, and other computer vision tasks. In this work, customized vision transfer with MobileNet as a classifier is proposed. Furthermore, it discusses future research directions and presents findings from extensive training and evaluation on diverse datasets, revealing that multi-head attention blocks significantly improve accuracy, outperforming other attention mechanisms. |
|---|---|
| AbstractList | Plant diseases significantly impact the agriculture sector, resulting in substantial productivity and economic losses. Effective plant health monitoring systems are crucial for sustainable agriculture, and predicting various diseases is a critical task. This work aims to provide accessible and informative visual data to farmers, enabling proactive decision-making and timely action. Deep learning models, particularly vision transformers with attention mechanisms, have performed well in numerous computer vision tasks. This comprehensive review provides an in-depth exploration of attention mechanisms in vision transformers, examining their role in enhancing image recognition, object detection, and other computer vision tasks. In this work, customized vision transfer with MobileNet as a classifier is proposed. Furthermore, it discusses future research directions and presents findings from extensive training and evaluation on diverse datasets, revealing that multi-head attention blocks significantly improve accuracy, outperforming other attention mechanisms. |
| Author | Kolli, Venkata Krishna Kishore Sistla, Venkatramaphanikumar Vallabhajosyula, Sasikala |
| Author_xml | – sequence: 1 givenname: Sasikala surname: Vallabhajosyula fullname: Vallabhajosyula, Sasikala email: kala.sasiv88@gmail.com organization: Vignan's Nirula Institute of Technology and Science for Women,Department of CSE,Guntur,Andhra Pradesh,India – sequence: 2 givenname: Venkatramaphanikumar surname: Sistla fullname: Sistla, Venkatramaphanikumar email: svrphanikumar@yahoo.com organization: Vignan's Foundation for Science, Technology, and Research,Department of CSE,Guntur,Andhra Pradesh,India – sequence: 3 givenname: Venkata Krishna Kishore surname: Kolli fullname: Kolli, Venkata Krishna Kishore email: kishorekvk_1@yahoo.com organization: Vignan's Foundation for Science, Technology, and Research,Department of CSE,Guntur,Andhra Pradesh,India |
| BookMark | eNpVUL1OwzAYNAIGKH0Dhu8FEuzYjuMxSoFWKioSgbU4zmdqqUlQ7A55e4KAgel0Pzqd7ppc9EOPhACjKWNU35XVblPnmZAqzWgm0lkTlPL8jCy10gWXlCuhpTr_xzm_Iu8lhClE7Ez0Fl7iqZ1g6CEeEF6D-UAYHLyZ0Q-nAGWM2Ec_209oD6b3oQvghhGej6aPsEXjYOUDmoCwwoj2O3tDLp05Blz-4oLUD_d1tU62u8dNVW4Tr3lMXMEME6aQTCLPs3m_5KrJ0VJLUWnVSkq1U7ZpC82aokGkzAojlVCatqrlC3L7U-sRcf85-s6M0_7vB_4FlrNVqQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACOIT62457.2024.10940036 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISBN | 9798350374957 |
| EndPage | 6 |
| ExternalDocumentID | 10940036 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-f81a14a8515e362109537b6ec0c0e797d5009f7cbd891b8bee01c4a574790d7d3 |
| IEDL.DBID | RIE |
| ISBN | 9798350374933 |
| IngestDate | Thu Apr 10 08:20:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-f81a14a8515e362109537b6ec0c0e797d5009f7cbd891b8bee01c4a574790d7d3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10940036 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sept.-6 |
| PublicationDateYYYYMMDD | 2024-09-06 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Asian Conference on Intelligent Technologies (ACOIT) |
| PublicationTitleAbbrev | ACOIT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8924507 |
| Snippet | Plant diseases significantly impact the agriculture sector, resulting in substantial productivity and economic losses. Effective plant health monitoring... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Agriculture Attention Attention mechanisms Computer vision Convolutional Neural Networks Deep learning MobilenetV2 Plant leaf disease detection Reviews Surveys Systematics Training Transformers Vision Transformer Visualization |
| Title | A systematic Study on the Usage of Various Attention Mechanisms for Plant Leaf Disease Detection |
| URI | https://ieeexplore.ieee.org/document/10940036 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kyL4a-JvcvDa2q5N0h7L5pjipodNdptJ80WG2MqWHvSvN0lXh4LgrRQKIaH53kveex9CV4E0pIGA9ARw4pldMvQ4iYUnaYdTQUPouHPI4YgOJvHdlExXZnXnhQEAJz4D3z66u3xZ5pU9KjN_uG3jHdFNtMkS2pi1dlKWGhxhg1QMO2_UOkF6nXUfbse0ExNmeGAn9pvPfzRScXWkv4tGzQhq-cirX2nh55-_whn_PcQ91F5b9vDjdzHaRxtQHKDt7GWxytaAQ_Sc4XVuM7YCwg9cFtggQDyx8jJcKvxkqHNZLXGmda2DxEOw3uD58m2JDb7FtsmRxvfAFe7Vdzu4B9rpuYo2Gvdvxt2Bt2qw4M3TSHsqCXkYc4O5CJg6FtroOSYo5EEeAEuZJAaAKZYLmaShSARAEOYxJ4aBpIFkMjpCraIs4BhhUNJgESEiUCKWpsYlNGKEMpVzAkGiTlDbztXsvY7QmDXTdPrH-zO0ZZfMibnoOWrpRQUXpvprcelW_QtiMq4V |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGLSgDICQeBXxxgNrSh5-JGPUUrXQFoYUdStx_AVViAS1zgC_HjtpqEBCYosyRJYT57uz7-5D6NqWmjRQkJaAmFr6L-lYMSXCksyNmWAOuOU-5HDEemNyN6GTpVm99MIAQCk-g5a5LM_yZZ4UZqtMr3DTxttj62iDEkJobdfaCXigkYSJUtH8vNbr2MFN2H7oR8wllGsm6JJW_YAfrVTKStLdRaN6DJWA5LVVKNFKPn_FM_57kHuouTLt4cfvcrSP1iA7QNvhy3yZrgGH6DnEq-RmbCSEHzjPsMaAeGwEZjhP8ZMmz3mxwKFSlRISD8G4g2eLtwXWCBebNkcKDyBOcac63cEdUKWiK2uiqHsbtXvWssWCNQs8ZaW-Ezsk1qiLgq5kjgmf44JBYic28IBLqiFYyhMh_cARvgCwnYTEVHOQwJZcekeokeUZHCMMqdRoRAgPUkGkrnI-8zhlPE1iCrafnqCmmavpexWiMa2n6fSP-1dosxcNB9NBf3R_hrbM6yulXewcNdS8gAuNBZS4LL-AL68ssWI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Asian+Conference+on+Intelligent+Technologies+%28ACOIT%29&rft.atitle=A+systematic+Study+on+the+Usage+of+Various+Attention+Mechanisms+for+Plant+Leaf+Disease+Detection&rft.au=Vallabhajosyula%2C+Sasikala&rft.au=Sistla%2C+Venkatramaphanikumar&rft.au=Kolli%2C+Venkata+Krishna+Kishore&rft.date=2024-09-06&rft.pub=IEEE&rft.isbn=9798350374933&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FACOIT62457.2024.10940036&rft.externalDocID=10940036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350374933/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350374933/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350374933/sc.gif&client=summon&freeimage=true |