Development of Cable Tunnel Monitoring System Based on ACO Optimization Neural Network in Smart Grid
With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarc...
        Saved in:
      
    
          | Published in | International Symposium on Autonomous Systems (Online) pp. 1 - 6 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        23.05.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2996-3850 | 
| DOI | 10.1109/ICAISISAS64483.2025.11052186 | 
Cover
| Abstract | With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarchical distributed architecture that establishes a closed-loop framework integrating real-time data acquisition with intelligent analytical applications. The proposed system employs an array of advanced detection technologies, including high-precision sensor networks, distributed fiber-optic temperature sensing (DTS), and adaptive wireless transmission protocols, to achieve comprehensive environmental monitoring of tunnel structures. A novel hybrid algorithm combining Back Propagation (BP) neural networks with Ant Colony Optimization (ACO) metaheuristics has been developed to synergistically enhance fault prediction accuracy while optimizing computational efficiency. The integration of 3D/Building Information Modeling (BIM) visualization techniques with Geographic Information Systems (GIS) spatial analysis enables dynamic condition mapping and data-driven decision support through spatiotemporal modeling of tunnel parameters. This research advances intelligent monitoring methodologies for underground utilities and offers practical insights for next-generation smart grid development. | 
    
|---|---|
| AbstractList | With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarchical distributed architecture that establishes a closed-loop framework integrating real-time data acquisition with intelligent analytical applications. The proposed system employs an array of advanced detection technologies, including high-precision sensor networks, distributed fiber-optic temperature sensing (DTS), and adaptive wireless transmission protocols, to achieve comprehensive environmental monitoring of tunnel structures. A novel hybrid algorithm combining Back Propagation (BP) neural networks with Ant Colony Optimization (ACO) metaheuristics has been developed to synergistically enhance fault prediction accuracy while optimizing computational efficiency. The integration of 3D/Building Information Modeling (BIM) visualization techniques with Geographic Information Systems (GIS) spatial analysis enables dynamic condition mapping and data-driven decision support through spatiotemporal modeling of tunnel parameters. This research advances intelligent monitoring methodologies for underground utilities and offers practical insights for next-generation smart grid development. | 
    
| Author | Wang, Shuo Zhang, Mingde Li, Zhihua Lang, Yaoming Dong, Liwen Guo, Fanghong  | 
    
| Author_xml | – sequence: 1 givenname: Shuo surname: Wang fullname: Wang, Shuo email: 1090500799@qq.com organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China – sequence: 2 givenname: Liwen surname: Dong fullname: Dong, Liwen email: vibrant_dong@163.com organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China – sequence: 3 givenname: Yaoming surname: Lang fullname: Lang, Yaoming email: 221124030409@zjut.edu.cn organization: Zhejiang University of Technology,College of Information Engineering,Hangzhou,China – sequence: 4 givenname: Mingde surname: Zhang fullname: Zhang, Mingde email: 2545525472@qq.com organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China – sequence: 5 givenname: Zhihua surname: Li fullname: Li, Zhihua email: 149957169@qq.com organization: Beijing Zhuoyue Electric Power Construction Co., Ltd.,Beijing,China – sequence: 6 givenname: Fanghong surname: Guo fullname: Guo, Fanghong email: fhguo@zjut.edu.cn organization: Zhejiang University of Technology,College of Information Engineering,Hangzhou,China  | 
    
| BookMark | eNo1UM1OwzAYCwgkxtgbcMiBa0f-mibHUcaoNNihu0-h-YICbTK1GWg8PUXAyZItW7Yv0VmIARC6oWROKdG3Vbmo6qpe1FIIxeeMsPxHyBlV8gTNdKEV5zQXoiDyFE2Y1jLjKicXaDYMb4QQTpXWhE2QvYcPaOO-g5BwdLg0Ly3g7SEEaPFTDD7F3odXXB-HBB2-MwNYHANelBu82Sff-S-T_Eg8w6E37QjpM_bv2Adcd6ZPeNV7e4XOnWkHmP3hFG0fltvyMVtvVuOUdeY1T1njjKKSEwqKKWILTTmRJBfWWekUs4V1WkLDrADHRUMpo9o56fRodK4xfIquf2M9AOz2vR8LHHf_v_BvzZtb0A | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICAISISAS64483.2025.11052186 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9798331544706 | 
    
| EISSN | 2996-3850 | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 11052186 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i93t-cfa816301e8280d791306054dfd6f82d7df96ec2d4ef34c11219ff6f9cfaffca3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jul 10 06:34:09 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i93t-cfa816301e8280d791306054dfd6f82d7df96ec2d4ef34c11219ff6f9cfaffca3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_11052186 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-May-23 | 
    
| PublicationDateYYYYMMDD | 2025-05-23 | 
    
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-23 day: 23  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International Symposium on Autonomous Systems (Online) | 
    
| PublicationTitleAbbrev | ICAIS & ISAS | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0003189902 | 
    
| Score | 1.9124515 | 
    
| Snippet | With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Ant Colony Optimization cable tunnel comprehensive environmental monitoring Computational modeling Data acquisition Environmental monitoring Geographic information systems Neural networks Power system stability Safety Smart grids Stability analysis Thermal stability  | 
    
| Title | Development of Cable Tunnel Monitoring System Based on ACO Optimization Neural Network in Smart Grid | 
    
| URI | https://ieeexplore.ieee.org/document/11052186 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTf5LBruzZNs-Y4i9MJbkIn7DbavASGrpXRXvzrfWm7-QMETy2FlpCk-fK9vO97hPRBQoqwgbQkCJXDkX45koNwTOClRvo8lbU7_9NUPLzwx0W4aMXqtRZGa10nn2nX3tZn-VCoyobKBghVoa2h1CGdYSQasdYuoIKTE1dWtk_6rY_mYBKPJskkGSWWgwTIBVnobj_xo5hKjSXjQzLdtqJJIXl1qzJz1ccvg8Z_N_OI9L5ke_R5B0jHZE_nJwS-pQXRwtDYaqXovLL5LbT5o21ojzbW5fQWUQ1okdNRPKMzXE_WrVCTWhuP9A0vdd44XeU0WeO8o_ebFfTIfHw3jx-ctrSCs5JB6SiTRrgR83yNhMuDoUQkQ17DwYAwEYMhGCm0YsC1CbjCPZkvjRFG4ovGqDQ4Jd28yPUZocwHQMqluK-RZWdRZkBLECwzSnvgiXPSsz20fG_MM5bbzrn44_klObADZQ_oWXBFuuWm0teI-2V2U4_3J7oHrVw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdPOy1XS9ptzzO4lx1F6EVfBttTgJD18poX_z1nrTdvIDgU0uhJSRpvvOdnO8LIR3gkCBsIC1xPWEwpF8GZ-AbyrUSxW2W8MqdfzL1R8_s4cV7acTqlRZGSlkVn0lT31Z7-ZCLUqfKughVnj5DaZvseIwxr5ZrbVIqOD1xbXV2Sadx0uyGwSCMwmgQaRbiIht0PHP9kR_HqVRoMjwg03U76iKSV7MsUlN8_LJo_HdDD0n7S7hHnzaQdES2ZHZM4FthEM0VDbRaisalrnCh9T-tk3u0Ni-nt4hrQPOMDoIZneGKsmykmlQbeSRveKkqx-kio9ESZx69Xy2gTeLhXRyMjOZwBWPB3cIQKuljKGbZEimXBT2OWIbMhoECX_Ud6IHivhQOMKlcJjAqs7lSvuL4olIicU9IK8szeUqoYwMg6RLMlsiz036qQHLwnVQJaYHln5G27qH5e22fMV93zvkfz2_I3iiejOfjcPp4Qfb1oOntese9JK1iVcorjAKK9Loa-0_7TbCp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Autonomous+Systems+%28Online%29&rft.atitle=Development+of+Cable+Tunnel+Monitoring+System+Based+on+ACO+Optimization+Neural+Network+in+Smart+Grid&rft.au=Wang%2C+Shuo&rft.au=Dong%2C+Liwen&rft.au=Lang%2C+Yaoming&rft.au=Zhang%2C+Mingde&rft.date=2025-05-23&rft.pub=IEEE&rft.eissn=2996-3850&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICAISISAS64483.2025.11052186&rft.externalDocID=11052186 |