Development of Cable Tunnel Monitoring System Based on ACO Optimization Neural Network in Smart Grid

With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarc...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Autonomous Systems (Online) pp. 1 - 6
Main Authors Wang, Shuo, Dong, Liwen, Lang, Yaoming, Zhang, Mingde, Li, Zhihua, Guo, Fanghong
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2025
Subjects
Online AccessGet full text
ISSN2996-3850
DOI10.1109/ICAISISAS64483.2025.11052186

Cover

Abstract With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarchical distributed architecture that establishes a closed-loop framework integrating real-time data acquisition with intelligent analytical applications. The proposed system employs an array of advanced detection technologies, including high-precision sensor networks, distributed fiber-optic temperature sensing (DTS), and adaptive wireless transmission protocols, to achieve comprehensive environmental monitoring of tunnel structures. A novel hybrid algorithm combining Back Propagation (BP) neural networks with Ant Colony Optimization (ACO) metaheuristics has been developed to synergistically enhance fault prediction accuracy while optimizing computational efficiency. The integration of 3D/Building Information Modeling (BIM) visualization techniques with Geographic Information Systems (GIS) spatial analysis enables dynamic condition mapping and data-driven decision support through spatiotemporal modeling of tunnel parameters. This research advances intelligent monitoring methodologies for underground utilities and offers practical insights for next-generation smart grid development.
AbstractList With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as critical components in modern power infrastructure systems. This study presents an innovative multi-modal monitoring system featuring a hierarchical distributed architecture that establishes a closed-loop framework integrating real-time data acquisition with intelligent analytical applications. The proposed system employs an array of advanced detection technologies, including high-precision sensor networks, distributed fiber-optic temperature sensing (DTS), and adaptive wireless transmission protocols, to achieve comprehensive environmental monitoring of tunnel structures. A novel hybrid algorithm combining Back Propagation (BP) neural networks with Ant Colony Optimization (ACO) metaheuristics has been developed to synergistically enhance fault prediction accuracy while optimizing computational efficiency. The integration of 3D/Building Information Modeling (BIM) visualization techniques with Geographic Information Systems (GIS) spatial analysis enables dynamic condition mapping and data-driven decision support through spatiotemporal modeling of tunnel parameters. This research advances intelligent monitoring methodologies for underground utilities and offers practical insights for next-generation smart grid development.
Author Wang, Shuo
Zhang, Mingde
Li, Zhihua
Lang, Yaoming
Dong, Liwen
Guo, Fanghong
Author_xml – sequence: 1
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  email: 1090500799@qq.com
  organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China
– sequence: 2
  givenname: Liwen
  surname: Dong
  fullname: Dong, Liwen
  email: vibrant_dong@163.com
  organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China
– sequence: 3
  givenname: Yaoming
  surname: Lang
  fullname: Lang, Yaoming
  email: 221124030409@zjut.edu.cn
  organization: Zhejiang University of Technology,College of Information Engineering,Hangzhou,China
– sequence: 4
  givenname: Mingde
  surname: Zhang
  fullname: Zhang, Mingde
  email: 2545525472@qq.com
  organization: State Grid Beijing Electric Power Company,State Grid Beijing Electric Power Company Cable Branch,Beijing,China
– sequence: 5
  givenname: Zhihua
  surname: Li
  fullname: Li, Zhihua
  email: 149957169@qq.com
  organization: Beijing Zhuoyue Electric Power Construction Co., Ltd.,Beijing,China
– sequence: 6
  givenname: Fanghong
  surname: Guo
  fullname: Guo, Fanghong
  email: fhguo@zjut.edu.cn
  organization: Zhejiang University of Technology,College of Information Engineering,Hangzhou,China
BookMark eNo1UM1OwzAYCwgkxtgbcMiBa0f-mibHUcaoNNihu0-h-YICbTK1GWg8PUXAyZItW7Yv0VmIARC6oWROKdG3Vbmo6qpe1FIIxeeMsPxHyBlV8gTNdKEV5zQXoiDyFE2Y1jLjKicXaDYMb4QQTpXWhE2QvYcPaOO-g5BwdLg0Ly3g7SEEaPFTDD7F3odXXB-HBB2-MwNYHANelBu82Sff-S-T_Eg8w6E37QjpM_bv2Adcd6ZPeNV7e4XOnWkHmP3hFG0fltvyMVtvVuOUdeY1T1njjKKSEwqKKWILTTmRJBfWWekUs4V1WkLDrADHRUMpo9o56fRodK4xfIquf2M9AOz2vR8LHHf_v_BvzZtb0A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAISISAS64483.2025.11052186
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331544706
EISSN 2996-3850
EndPage 6
ExternalDocumentID 11052186
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-cfa816301e8280d791306054dfd6f82d7df96ec2d4ef34c11219ff6f9cfaffca3
IEDL.DBID RIE
IngestDate Thu Jul 10 06:34:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-cfa816301e8280d791306054dfd6f82d7df96ec2d4ef34c11219ff6f9cfaffca3
PageCount 6
ParticipantIDs ieee_primary_11052186
PublicationCentury 2000
PublicationDate 2025-May-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-23
  day: 23
PublicationDecade 2020
PublicationTitle International Symposium on Autonomous Systems (Online)
PublicationTitleAbbrev ICAIS & ISAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189902
Score 1.9124515
Snippet With the accelerated urbanization process and escalating demand for electrical energy, the operational safety and stability of cable tunnels have emerged as...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Ant Colony Optimization
cable tunnel
comprehensive environmental monitoring
Computational modeling
Data acquisition
Environmental monitoring
Geographic information systems
Neural networks
Power system stability
Safety
Smart grids
Stability analysis
Thermal stability
Title Development of Cable Tunnel Monitoring System Based on ACO Optimization Neural Network in Smart Grid
URI https://ieeexplore.ieee.org/document/11052186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTf5LBruzZNs-Y4i9MJbkIn7DbavASGrpXRXvzrfWm7-QMETy2FlpCk-fK9vO97hPRBQoqwgbQkCJXDkX45koNwTOClRvo8lbU7_9NUPLzwx0W4aMXqtRZGa10nn2nX3tZn-VCoyobKBghVoa2h1CGdYSQasdYuoIKTE1dWtk_6rY_mYBKPJskkGSWWgwTIBVnobj_xo5hKjSXjQzLdtqJJIXl1qzJz1ccvg8Z_N_OI9L5ke_R5B0jHZE_nJwS-pQXRwtDYaqXovLL5LbT5o21ojzbW5fQWUQ1okdNRPKMzXE_WrVCTWhuP9A0vdd44XeU0WeO8o_ebFfTIfHw3jx-ctrSCs5JB6SiTRrgR83yNhMuDoUQkQ17DwYAwEYMhGCm0YsC1CbjCPZkvjRFG4ovGqDQ4Jd28yPUZocwHQMqluK-RZWdRZkBLECwzSnvgiXPSsz20fG_MM5bbzrn44_klObADZQ_oWXBFuuWm0teI-2V2U4_3J7oHrVw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdPOy1XS9ptzzO4lx1F6EVfBttTgJD18poX_z1nrTdvIDgU0uhJSRpvvOdnO8LIR3gkCBsIC1xPWEwpF8GZ-AbyrUSxW2W8MqdfzL1R8_s4cV7acTqlRZGSlkVn0lT31Z7-ZCLUqfKughVnj5DaZvseIwxr5ZrbVIqOD1xbXV2Sadx0uyGwSCMwmgQaRbiIht0PHP9kR_HqVRoMjwg03U76iKSV7MsUlN8_LJo_HdDD0n7S7hHnzaQdES2ZHZM4FthEM0VDbRaisalrnCh9T-tk3u0Ni-nt4hrQPOMDoIZneGKsmykmlQbeSRveKkqx-kio9ESZx69Xy2gTeLhXRyMjOZwBWPB3cIQKuljKGbZEimXBT2OWIbMhoECX_Ud6IHivhQOMKlcJjAqs7lSvuL4olIicU9IK8szeUqoYwMg6RLMlsiz036qQHLwnVQJaYHln5G27qH5e22fMV93zvkfz2_I3iiejOfjcPp4Qfb1oOntese9JK1iVcorjAKK9Loa-0_7TbCp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Autonomous+Systems+%28Online%29&rft.atitle=Development+of+Cable+Tunnel+Monitoring+System+Based+on+ACO+Optimization+Neural+Network+in+Smart+Grid&rft.au=Wang%2C+Shuo&rft.au=Dong%2C+Liwen&rft.au=Lang%2C+Yaoming&rft.au=Zhang%2C+Mingde&rft.date=2025-05-23&rft.pub=IEEE&rft.eissn=2996-3850&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICAISISAS64483.2025.11052186&rft.externalDocID=11052186