Predictive Modelling for Network Threat Detection using Artificial Intelligence Techniques

This work presents the development of an improved network threat detection system that uses machine learning algorithms as artificial intelligence processing techniques. The system receives numerous information sources containing time stamp data and source IP address information and destination IP a...

Full description

Saved in:
Bibliographic Details
Published in2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN) pp. 1299 - 1305
Main Authors P, Jonathan Paul, R, Manoranjitham
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.05.2025
Subjects
Online AccessGet full text
DOI10.1109/ICPCSN65854.2025.11035811

Cover

Abstract This work presents the development of an improved network threat detection system that uses machine learning algorithms as artificial intelligence processing techniques. The system receives numerous information sources containing time stamp data and source IP address information and destination IP address data with protocol classification data and traffic record data in addition tio firewall log data and IDS/IPS alerts data and multiple device record data and user data. System inputs undergo analysis to generate anomaly scores which also provide security alerts that detail attacks alongside type information and severity ratings and recommended risk reduction actions. This project deploys Artificial Intelligence approaches to boost security findings speed and accuracy thus enabling organizations to improve their cybersecurity sectors. Researchers focus on developing secure security measures in altering environments by seeking the best machine learning algorithm that delivers effective threat detection alongside quick security responses. Researchers can use the "Cybersecurity Attacks" dataset on Kaggle to establish their working information base for this project that explores forthcoming automated network defense systems.
AbstractList This work presents the development of an improved network threat detection system that uses machine learning algorithms as artificial intelligence processing techniques. The system receives numerous information sources containing time stamp data and source IP address information and destination IP address data with protocol classification data and traffic record data in addition tio firewall log data and IDS/IPS alerts data and multiple device record data and user data. System inputs undergo analysis to generate anomaly scores which also provide security alerts that detail attacks alongside type information and severity ratings and recommended risk reduction actions. This project deploys Artificial Intelligence approaches to boost security findings speed and accuracy thus enabling organizations to improve their cybersecurity sectors. Researchers focus on developing secure security measures in altering environments by seeking the best machine learning algorithm that delivers effective threat detection alongside quick security responses. Researchers can use the "Cybersecurity Attacks" dataset on Kaggle to establish their working information base for this project that explores forthcoming automated network defense systems.
Author P, Jonathan Paul
R, Manoranjitham
Author_xml – sequence: 1
  givenname: Jonathan Paul
  surname: P
  fullname: P, Jonathan Paul
  email: jonathanpaul@karunya.edu.in
  organization: Karunya Institute of Technology and Sciences,Division of Artificial Intelligence and Machine Learning,Coimbatore,Tamil Nadu
– sequence: 2
  givenname: Manoranjitham
  surname: R
  fullname: R, Manoranjitham
  email: manoranjithm@karunya.edu
  organization: Karunya Institute of Technology and Sciences,Division of Artificial Intelligence and Machine Learning,Coimbatore,Tamil Nadu
BookMark eNo1j8tOwzAURI0ECyj9AxbmA1Js3zh2llV4RSqlElmxqRznurUIDjguiL-HCFiNNDpnpDkjx2EISMglZwvOWXlVV5vqaV1ILfOFYEJOLUjN-RGZl6rUAFyC5CWckudNxM7b5D-QPgwd9r0PO-qGSNeYPof4Qpt9RJPoNSb8wYZAD-OELGPyzltvelqHNHk7DBZpg3Yf_PsBx3Ny4kw_4vwvZ6S5vWmq-2z1eFdXy1XmS0iZRaUk5ByFwg6EEaptC-DGCQfCcqN0kWvGW2NRC1S8LTtmHLDcKaOYA5iRi99Zj4jbt-hfTfza_j-Gb1JTUps
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPCSN65854.2025.11035811
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331535193
EndPage 1305
ExternalDocumentID 11035811
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-ce775341e27ed32a27bb631af2f32c1a7864801bace82e71b9d0af304f7a70f33
IEDL.DBID RIE
IngestDate Wed Jun 25 06:00:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ce775341e27ed32a27bb631af2f32c1a7864801bace82e71b9d0af304f7a70f33
PageCount 7
ParticipantIDs ieee_primary_11035811
PublicationCentury 2000
PublicationDate 2025-May-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-14
  day: 14
PublicationDecade 2020
PublicationTitle 2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN)
PublicationTitleAbbrev ICPCSN
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9116958
Snippet This work presents the development of an improved network threat detection system that uses machine learning algorithms as artificial intelligence processing...
SourceID ieee
SourceType Publisher
StartPage 1299
SubjectTerms Artificial Intelligence (AI)
Computational modeling
Cybersecurity
Intrusion Detection Systems (IDS)
IP networks
Machine learning
Machine Learning (ML)
Machine learning algorithms
Network Threat Detection
Organizations
Pervasive computing
Predictive Modelling
Predictive models
Protocols
Social networking (online)
Threat assessment
Title Predictive Modelling for Network Threat Detection using Artificial Intelligence Techniques
URI https://ieeexplore.ieee.org/document/11035811
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYsU3K3hN2uwm2eYo1dIKhoIRipeyu5moCGmJ6cVf78ym8QWCtxACCTNhv3l88w1jl4iQEAYQeyLJQy_EmJfOwchDLClkvxC5AioN3KXx-CG8nUWz9bC6m4UBAEc-A58uXS8_X9gVlcp6CFUk14XJzqYaxM2w1ha7WOtm9ibD6fA-RUh1xRIR-e3zPzanOOAY7bC0fWXDF3n1V7Xx7fsvNcZ_f9Mu637N6PHpJ_rssQ0o99njtKLGCx1hnLacOcFtjnEpTxu6N8-eKUrk11A7DlbJifj-xK8qxxnCn5FPvol08qyVeH3rsmx0kw3H3np7gveSyNqzoDATQTcIBbkUWihjYhnoAn0gbKDRgKQcY7SFgQAVmCTva3RPWCit-oWUB6xTLko4ZHwQG4gSrRODyRrmYxik0TbcQlqMZWyeHLEu2WW-bPQx5q1Jjv-4f8K2yT3Ugw_CU9apqxWcIbTX5ty59APO66SU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kgnpSseLbFbwmbTabbHOUamm1DQUjFC9lN5lYEVKp6cVf78ym8QWCt7AQsuyE_ebxzTeMXSJCgvQgdESUSUeiz0v3YOAgluR-OxeZAkoNjOKw_yBvJ8Fk1axue2EAwJLPwKVHW8vP5umSUmUthCqS68JgZz2QUgZVu9YGu1gpZ7YG3XH3PkZQtekSEbj1Gz9mp1jo6G2zuP5oxRh5cZelcdP3X3qM_97VDmt-denx8Sf-7LI1KPbY43hBpRe6xDjNObOS2xw9Ux5XhG-ezMhP5NdQWhZWwYn6_sSvFpY1hL8jH3yT6eRJLfL61mRJ7ybp9p3V_ATnOfJLJwWFsQgaQijIfKGFMib0PZ2jFUTqadUJSTvG6BQ6ApRnoqyt0UAyV1q1c9_fZ41iXsAB453QQBBpHRkM1zAiQzeN5uHmforeTJpFh6xJ5zJ9rRQypvWRHP2xfs42-8loOB0O4rtjtkWmooq8J09Yo1ws4RSBvjRn1rwfmtKn4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Predictive+Modelling+for+Network+Threat+Detection+using+Artificial+Intelligence+Techniques&rft.au=P%2C+Jonathan+Paul&rft.au=R%2C+Manoranjitham&rft.date=2025-05-14&rft.pub=IEEE&rft.spage=1299&rft.epage=1305&rft_id=info:doi/10.1109%2FICPCSN65854.2025.11035811&rft.externalDocID=11035811