Translating Federated Learning Algorithms in Python into CSP Processes Using ChatGPT

The Python Testbed for Federated Learning Algorithms is a simple Python FL framework that is easy to use by ML&AI developers who do not need to be professional programmers and is also amenable to LLMs. In the previous research, generic federated learning algorithms provided by this framework wer...

Full description

Saved in:
Bibliographic Details
Published in2025 MIPRO 48th ICT and Electronics Convention pp. 18 - 23
Main Authors Popovic, Miroslav, Popovic, Marko, Djukic, Miodrag, Basicevic, Ilija
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.06.2025
Subjects
Online AccessGet full text
DOI10.1109/MIPRO65660.2025.11131995

Cover

Abstract The Python Testbed for Federated Learning Algorithms is a simple Python FL framework that is easy to use by ML&AI developers who do not need to be professional programmers and is also amenable to LLMs. In the previous research, generic federated learning algorithms provided by this framework were manually translated into the CSP processes and algorithms' safety and liveness properties were automatically verified by the model checker PAT. In this paper, a simple translation process is introduced wherein the ChatGPT is used to automate the translation of the mentioned federated learning algorithms in Python into the corresponding CSP processes. Within the process, the minimality of the used context is estimated based on the feedback from ChatGPT. The proposed translation process was experimentally validated by successful translation (verified by the model checker PAT) of both generic centralized and decentralized federated learning algorithms.
AbstractList The Python Testbed for Federated Learning Algorithms is a simple Python FL framework that is easy to use by ML&AI developers who do not need to be professional programmers and is also amenable to LLMs. In the previous research, generic federated learning algorithms provided by this framework were manually translated into the CSP processes and algorithms' safety and liveness properties were automatically verified by the model checker PAT. In this paper, a simple translation process is introduced wherein the ChatGPT is used to automate the translation of the mentioned federated learning algorithms in Python into the corresponding CSP processes. Within the process, the minimality of the used context is estimated based on the feedback from ChatGPT. The proposed translation process was experimentally validated by successful translation (verified by the model checker PAT) of both generic centralized and decentralized federated learning algorithms.
Author Djukic, Miodrag
Popovic, Marko
Popovic, Miroslav
Basicevic, Ilija
Author_xml – sequence: 1
  givenname: Miroslav
  surname: Popovic
  fullname: Popovic, Miroslav
  email: miroslav.popovic@rt-rk.uns.ac.rs
  organization: University of Novi Sad,Faculty of Technical Sciences,Novi Sad,Serbia
– sequence: 2
  givenname: Marko
  surname: Popovic
  fullname: Popovic, Marko
  organization: RT-RK Institute for Computer Based Systems,Novi Sad,Serbia
– sequence: 3
  givenname: Miodrag
  surname: Djukic
  fullname: Djukic, Miodrag
  organization: University of Novi Sad,Faculty of Technical Sciences,Novi Sad,Serbia
– sequence: 4
  givenname: Ilija
  surname: Basicevic
  fullname: Basicevic, Ilija
  organization: University of Novi Sad,Faculty of Technical Sciences,Novi Sad,Serbia
BookMark eNo1j0FOwzAURI0ECyi9AQtfoMWO8514WUW0VApqBGFdOfZ3Eyl1kO1Nb08q6GpGo9HozRO595NHQihna86Zev3YN58HCVKydcYymEMuuFJwR5aqUKUQHASogj-Stg3ax1GnwZ_oFi0GndDSGnXw12gznqYwpP4c6eBpc0n95GeXJlp9NbQJk8EYMdLveG1XvU67pn0mD06PEZf_uiDt9q2t3lf1YbevNvVqUCKtOq2kk27mza1hljkA5MoAK3OwmcmNdQhWl4VxhbNFB1BqVjJr5ExuOi4W5OVvdkDE408Yzjpcjrev4hdvTE_I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MIPRO65660.2025.11131995
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331535971
9798331535964
EndPage 23
ExternalDocumentID 11131995
Genre orig-research
GrantInformation_xml – fundername: European Union
  grantid: TaRDIS,101093006
  funderid: 10.13039/501100000780
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-ba96f6f1094dc0d0f55e19c50845d2c4cdfe5da87cf7fd7b558a080dc6971cb13
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ba96f6f1094dc0d0f55e19c50845d2c4cdfe5da87cf7fd7b558a080dc6971cb13
PageCount 6
ParticipantIDs ieee_primary_11131995
PublicationCentury 2000
PublicationDate 2025-June-2
PublicationDateYYYYMMDD 2025-06-02
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-2
  day: 02
PublicationDecade 2020
PublicationTitle 2025 MIPRO 48th ICT and Electronics Convention
PublicationTitleAbbrev MIPRO
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.914049
Snippet The Python Testbed for Federated Learning Algorithms is a simple Python FL framework that is easy to use by ML&AI developers who do not need to be professional...
SourceID ieee
SourceType Publisher
StartPage 18
SubjectTerms Chatbots
ChatGPT
Codes
Communicating Sequential Processes
Federated learning
Formal verification
Programming profession
Python
Safety
Syntactics
Translation
Title Translating Federated Learning Algorithms in Python into CSP Processes Using ChatGPT
URI https://ieeexplore.ieee.org/document/11131995
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7btVnz2h5lOKewWbTCbqNJXrehtmPrDvrXm2StoiB4e5RAywvhfa_5vu8RcsVkzD3hBw5yBk7Acn2kEJgDHMNQSFDgGzXyaAzD5-B-wie1WN1qYRDRks_QNaG9y1el3JhfZV0zFt1IilukFUawFWs17Bwv7o7ukscHg0883fcx7jbLfwxOsXVjsEfGzRu3dJEXd1MJV378MmP89yftk863RI8mX8XngOxgcUhSW3kMu62Y0YGxidBIUtHaQ3VGr19n5WpRzd_WdFHQ5N34BuioKmn_KaG1ZgDX1PIIaH-eVbdJ2iHp4CbtD516bIKziHuVI7IYcsh1QgIlPeXlnKMfSw3EAq6YDKTKkassMn5EuQoF51GmYaOSEIe-FH7viLSLssBjQjMNr1A3ZMxDCIRuVFgOIEIMIc4gyvgJ6ZiMTJdbY4xpk4zTP56fkV2zMZZpxc5Ju1pt8ELX9Epc2r38BNKDon8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Dars2SdD3KcG66zaIVdhtN8rqNaStbd9C_3iRrFQXB26MQWl4I73vN930PoSsiQ-YJnzrACHcoSfWRAk4cziAIhOSK-0aNPBjy7jO9G7FRKVa3WhgAsOQzcE1o7_JVLlfmV1nDjEU3kuJNtMUopWwt16r4OV7YGPSixweDUDzd-RHmVgt-jE6xlaOzi4bVO9eEkbm7KoQrP37ZMf77o_ZQ_Vukh6Ov8rOPNiA7QLGtPYbflk1wxxhFaCypcOmiOsHXL5N8MSumr0s8y3D0bpwDdFTkuP0U4VI1AEtsmQS4PU2K2yiuo7hzE7e7Tjk4wZmFzcIRSchTnuqEUCU95aWMgR9KDcUoU0RSqVJgKmkZR6JUBYKxVqKBo5I8DHwp_OYhqmV5BkcIJxpggW7JiAecCt2qkJRzEUDAw4S3EnaM6iYj47e1Nca4SsbJH88v0XY3HvTH_d7w_hTtmE2yvCtyhmrFYgXnusIX4sLu6yeEFaXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+MIPRO+48th+ICT+and+Electronics+Convention&rft.atitle=Translating+Federated+Learning+Algorithms+in+Python+into+CSP+Processes+Using+ChatGPT&rft.au=Popovic%2C+Miroslav&rft.au=Popovic%2C+Marko&rft.au=Djukic%2C+Miodrag&rft.au=Basicevic%2C+Ilija&rft.date=2025-06-02&rft.pub=IEEE&rft.spage=18&rft.epage=23&rft_id=info:doi/10.1109%2FMIPRO65660.2025.11131995&rft.externalDocID=11131995