Improving Healthcare Data Interoperability with Machine Learning and Cloud Solutions on Pivotal Cloud Foundry

Improving interoperability in healthcare data systems is essential for enhancing clinical efficiency, patient outcomes, and system integration. Utilizing Machine Learning (ML) models on cloud platforms such as Pivotal Cloud Foundry provides a revolutionary method for facilitating smooth data interch...

Full description

Saved in:
Bibliographic Details
Published inCommunications and Signal Processing, International Conference on pp. 379 - 384
Main Authors L, GnanaPrakash, N, Mohankumar, A, Senthil Murugan, S, Subalya, R, Mahalakshmi, K, Mathivanan
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.06.2025
Subjects
Online AccessGet full text
ISSN2836-1873
DOI10.1109/ICCSP64183.2025.11089219

Cover

Abstract Improving interoperability in healthcare data systems is essential for enhancing clinical efficiency, patient outcomes, and system integration. Utilizing Machine Learning (ML) models on cloud platforms such as Pivotal Cloud Foundry provides a revolutionary method for facilitating smooth data interchange across diverse healthcare systems. Pivotal Cloud Foundry facilitates the modular deployment of machine learning algorithms that detect data discrepancies, standardize formats, and automate data mapping procedures via the use of microservices and containerization capabilities. These features diminish latency and enhance the precision of data transfer across electronic health records, diagnostic systems, and administrative databases. Machine learning improves interoperability by identifying trends, abnormalities, and missing values that often obstruct successful data integration. Pivotal's scalable architecture enables real-time processing, secure APIs, and comprehensive data governance, hence assuring regulatory compliance and uniform performance. The integration of cognitive computing and cloud-native infrastructure streamlines data harmonization and facilitates proactive healthcare delivery. The solution enhances operational efficiency, fosters increased cooperation among providers, and expedites the shift towards a cohesive healthcare data ecosystem characterized by more accurate, rapid, and accessible information sharing.
AbstractList Improving interoperability in healthcare data systems is essential for enhancing clinical efficiency, patient outcomes, and system integration. Utilizing Machine Learning (ML) models on cloud platforms such as Pivotal Cloud Foundry provides a revolutionary method for facilitating smooth data interchange across diverse healthcare systems. Pivotal Cloud Foundry facilitates the modular deployment of machine learning algorithms that detect data discrepancies, standardize formats, and automate data mapping procedures via the use of microservices and containerization capabilities. These features diminish latency and enhance the precision of data transfer across electronic health records, diagnostic systems, and administrative databases. Machine learning improves interoperability by identifying trends, abnormalities, and missing values that often obstruct successful data integration. Pivotal's scalable architecture enables real-time processing, secure APIs, and comprehensive data governance, hence assuring regulatory compliance and uniform performance. The integration of cognitive computing and cloud-native infrastructure streamlines data harmonization and facilitates proactive healthcare delivery. The solution enhances operational efficiency, fosters increased cooperation among providers, and expedites the shift towards a cohesive healthcare data ecosystem characterized by more accurate, rapid, and accessible information sharing.
Author L, GnanaPrakash
S, Subalya
R, Mahalakshmi
K, Mathivanan
N, Mohankumar
A, Senthil Murugan
Author_xml – sequence: 1
  givenname: GnanaPrakash
  surname: L
  fullname: L, GnanaPrakash
  email: gnanavcet@gmail.com
  organization: Annapoorana Engineering College (Autonomous),Department of Electrical and Electronics Engineering,Salem,Tamil Nadu,India
– sequence: 2
  givenname: Mohankumar
  surname: N
  fullname: N, Mohankumar
  email: nmkprofessor@gmail.com
  organization: Symbiosis International (Deemed University),Symbiosis Institute of Technology, Nagpur Campus,Pune,India
– sequence: 3
  givenname: Senthil Murugan
  surname: A
  fullname: A, Senthil Murugan
  email: viha.senthil@gmail.com
  organization: St. Peter's Engineering College,Department of Computer Science and Engineering,Hyderabad,Telangana,India
– sequence: 4
  givenname: Subalya
  surname: S
  fullname: S, Subalya
  email: rameshsubalya2014@gmail.com
  organization: St. Joseph's College of Engineering,Department of Management Studies,Chennai,Tamil Nadu,India
– sequence: 5
  givenname: Mahalakshmi
  surname: R
  fullname: R, Mahalakshmi
  email: mahalakshmi@vmkvec.edu.in
  organization: Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University),Centre for Artificial Intelligence & Data Science (CAI),Department of Computer Science and Engineering,Salem,Tamil Nadu,India
– sequence: 6
  givenname: Mathivanan
  surname: K
  fullname: K, Mathivanan
  email: kj.mathi@gmail.com
  organization: Adhiparasakthi Engineering College,Department of Electronics and Communication Engineering,Chennai,Tamil Nadu,India
BookMark eNo1kFFPwjAUhavRRET-gQ_9A9N7W7a2j2aKLMFIAu_kbu2kZrRkKxj-vSHi00nOl_M9nHt2E2JwjHGEJ0Qwz1VZrpbFFLV8EiDyc6mNQHPFJkZpLIp8mitZ4DUbCS2LDLWSd2wyDN8AIFHpAmHEdtVu38ejD1987qhL24Z6x18pEa9Ccn3cu55q3_l04j8-bfkHNVsfHF846sN5RsHysosHy1exOyQfw8Bj4Et_jIm6C5rFQ7D96YHdttQNbnLJMVvP3tblPFt8vlflyyLzRqasBksNEdrWWKMAlUJhtUWTazmFRmkBba5VXQM4sDXIRitsahKtQt0KJ8fs8U_rnXObfe931J82_wfJX7mtXkY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSP64183.2025.11089219
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665457361
1665457368
EISSN 2836-1873
EndPage 384
ExternalDocumentID 11089219
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-b0dacaa1df9d97017712d8d1958340c7820f587bb00e0db03c871cba2f718f2e3
IEDL.DBID RIE
IngestDate Wed Aug 06 17:55:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b0dacaa1df9d97017712d8d1958340c7820f587bb00e0db03c871cba2f718f2e3
PageCount 6
ParticipantIDs ieee_primary_11089219
PublicationCentury 2000
PublicationDate 2025-June-5
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-5
  day: 05
PublicationDecade 2020
PublicationTitle Communications and Signal Processing, International Conference on
PublicationTitleAbbrev ICCSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003178610
Score 1.9156896
Snippet Improving interoperability in healthcare data systems is essential for enhancing clinical efficiency, patient outcomes, and system integration. Utilizing...
SourceID ieee
SourceType Publisher
StartPage 379
SubjectTerms Cloud solutions
Data integration
Data models
Data transfer
Ecosystems
Foundries
Healthcare interoperability
Interoperability
Machine learning
Machine learning algorithms
Medical services
Microservice architectures
Pivotal Cloud Foundry
Real-time systems
Title Improving Healthcare Data Interoperability with Machine Learning and Cloud Solutions on Pivotal Cloud Foundry
URI https://ieeexplore.ieee.org/document/11089219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66J59UnHgnD762a9JL2ufqmMLGwAl7G7nKUNsxWmH-ek_SiygIvpWGQshp-p18_c53ELqVkANJIRJb9mG8iCriwTcw9lSQCABwKTLHd0xnyeQ5elzGy7ZY3dXCaK2d-Ez79tL9y1elrC1VNrKS9Yxak899xrKmWKsnVAAIU8gFOrVOkI0e8vxpnkTw0sI5kMZ-9_iPRioOR8aHaNbNoJGPvPp1JXz5-cuc8d9TPELD75I9PO_B6Bjt6eIEvfeUAZ70Oi98xyuOHRNYbvS28eneYUvI4qmTVmrcuq6-YF4onL-VtcI9f4bLAs_XHyVk7e2Qa8203Q3RYny_yCde21_BW2dh5YlAcck5USZTGYOdyQhVqbLuM2EUSGukZ-KUCdiYOlAiCCUcrqTg1ACeGarDUzQoykKfIWw4i-OQGQmxjhJBBDOCUJYSnsIIic7R0C7VatM4aKy6Vbr44_4lOrARc5Ks-AoNqm2trwH8K3Hjgv4FVN-vhg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvSkYsW3e_CaNO9NztGSalsKVuit7FOKmpSSCPXXO7t5iILgbcnCsuwjM_PtN98gdMvBB-KMRTrtQ1mBJ1wL_oGhJZyIgQHnLDF4x2QaZc_BwyJcNMnqJhdGSmnIZ9LWTfOWLwpeaahsoCnriadFPndDCCtIna7VQSpgCmPwBlq-jpMMRmn6NIsCOLYQCXqh3Q7wo5SKsSTDAzRt51ATSF7tqmQ2__wlz_jvSR6i_nfSHp515ugI7cj8GL13oAHOOqYXvqMlxQYLLNZyUyt1b7GGZPHEkCslbnRXXzDNBU7fikrgDkHDRY5nq48C_PamyxRn2mz7aD68n6eZ1VRYsFaJX1rMEZRT6gqViITA3SSuJ2Kh9Wf8wOFaSk-FMWFwNaUjmONzCK84o54Ci6Y86Z-gXl7k8hRhRUkY-kRx2O0gYi4jirkeiV0aQ48bnKG-XqrlutbQWLardP7H9xu0l80n4-V4NH28QPt69wxBK7xEvXJTyStwBUp2bQ7AF7rfstc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Communications+and+Signal+Processing%2C+International+Conference+on&rft.atitle=Improving+Healthcare+Data+Interoperability+with+Machine+Learning+and+Cloud+Solutions+on+Pivotal+Cloud+Foundry&rft.au=L%2C+GnanaPrakash&rft.au=N%2C+Mohankumar&rft.au=A%2C+Senthil+Murugan&rft.au=S%2C+Subalya&rft.date=2025-06-05&rft.pub=IEEE&rft.eissn=2836-1873&rft.spage=379&rft.epage=384&rft_id=info:doi/10.1109%2FICCSP64183.2025.11089219&rft.externalDocID=11089219