DRL-Based Optimisation for Task Offloading in Space-Air-Ground Integrated Networks: A Reliability-Driven Approach
This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology,...
        Saved in:
      
    
          | Published in | IEEE International Conference on Communications (2003) pp. 6958 - 6963 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        08.06.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1938-1883 | 
| DOI | 10.1109/ICC52391.2025.11161527 | 
Cover
| Abstract | This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology, end-to-end communications are facilitated by relay unmanned aerial vehicles (UAVs). The formulated problem jointly optimises task offloading portions and bandwidth allocations for both ground-to-air and air-to-space links, subject to quality-of-service (QoS) requirements, transmission rates, system bandwidth, and the computing capacity of the satellite's edge server. To solve the formulated complex non-linear, non-convex, and mixed-integer problem, we propose an efficient solution underpinned by a deep reinforcement learning (DRL). Simulation results demonstrate the effectiveness of the proposed method, which achieves stable training performance and an optimised reliable offloading ratio compared to benchmark schemes. | 
    
|---|---|
| AbstractList | This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology, end-to-end communications are facilitated by relay unmanned aerial vehicles (UAVs). The formulated problem jointly optimises task offloading portions and bandwidth allocations for both ground-to-air and air-to-space links, subject to quality-of-service (QoS) requirements, transmission rates, system bandwidth, and the computing capacity of the satellite's edge server. To solve the formulated complex non-linear, non-convex, and mixed-integer problem, we propose an efficient solution underpinned by a deep reinforcement learning (DRL). Simulation results demonstrate the effectiveness of the proposed method, which achieves stable training performance and an optimised reliable offloading ratio compared to benchmark schemes. | 
    
| Author | Khosravirad, Saeed R. Dobre, Octavia A. Duong, Trung Q. Cotton, Simon L. Van Huynh, Dang  | 
    
| Author_xml | – sequence: 1 givenname: Dang surname: Van Huynh fullname: Van Huynh, Dang email: vdhuynh@mun.ca organization: Memorial University,Canada – sequence: 2 givenname: Saeed R. surname: Khosravirad fullname: Khosravirad, Saeed R. email: saeed.khosravirad@nokia-bell-labs.com organization: Nokia Bell Labs,USA – sequence: 3 givenname: Simon L. surname: Cotton fullname: Cotton, Simon L. email: simon.cotton@qub.ac.uk organization: Queen's University Belfast,UK – sequence: 4 givenname: Octavia A. surname: Dobre fullname: Dobre, Octavia A. email: odobre@mun.ca organization: Memorial University,Canada – sequence: 5 givenname: Trung Q. surname: Duong fullname: Duong, Trung Q. email: tduong@mun.ca organization: Memorial University,Canada  | 
    
| BookMark | eNo1kNFOwjAYhavRREDewJi-QLH_ymjr3RyKS4gkyD35y1qsjG52U8Pbu0TNuTg5X3LOxRmSi1AHS8gt8AkA13dFnqeJ0DBJeJL2CGaQJvKMjLXUSghIeZqAPicD0EIxUEpckWHbvvOeawED8jFfL9kDtrakq6bzR99i5-tAXR3pBtsDXTlX1Vj6sKc-0NcGd5ZlPrJFrD9DSYvQ2X3Eru-_2O67jof2nmZ0bSuPxle-O7F59F820KxpYo27t2ty6bBq7fjPR2Tz9LjJn9lytSjybMm8Fh1DlxpTcgDJZxq0mYk-cQQtlUusQ8WlSVLJrTFGSFRCgkAFajoVvZwQI3LzO-uttdsm-iPG0_b_IfEDlcpcfA | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/ICC52391.2025.11161527 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9798331505219 | 
    
| EISSN | 1938-1883 | 
    
| EndPage | 6963 | 
    
| ExternalDocumentID | 11161527 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i93t-af5bbd011706919b63bd00a1978f2efa807b2570ebbb37a83713a818443434f33 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Oct 01 07:05:03 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i93t-af5bbd011706919b63bd00a1978f2efa807b2570ebbb37a83713a818443434f33 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_11161527 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-June-8 | 
    
| PublicationDateYYYYMMDD | 2025-06-08 | 
    
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-8 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE International Conference on Communications (2003) | 
    
| PublicationTitleAbbrev | ICC | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0052931 | 
    
| Score | 2.3032846 | 
    
| Snippet | This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 6958 | 
    
| SubjectTerms | Channel allocation Edge computing Optimization Quality of service Reliability engineering Servers Simulation Space-air-ground integrated networks Training Vehicle dynamics  | 
    
| Title | DRL-Based Optimisation for Task Offloading in Space-Air-Ground Integrated Networks: A Reliability-Driven Approach | 
    
| URI | https://ieeexplore.ieee.org/document/11161527 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFG10T_ri14zf6YOvZbBCob7NzWUzuhmdyd6WlrbJMmW6sQf99d4W8Csx8Q1ICqSFnnvbc85F6DzxIeYXipNmGnESWp2PYLEkADcmUIoa6syebwes9xhej6NxKVZ3WhittSOfac8eur18NU9XdqmsAf8ls2VY19F6nLBCrFVNuxHgVlBKgAOfN_rtNuRY3KaAzcirWv6ooeIgpLuFBtXDC-bIzFvl0kvff_ky_vvttlH9S62H7z5xaAet6WwXbX4zGtxDr537G3IJgKXwEOaI55LDgyFixSOxnOGhMU9zR6fH0ww_QCKtSWu6IHZpKlO4X5lKKDwoeOPLC9zCls9c-Hy_kc7Czpu4VXqU19GoezVq90hZbIFMOc2JMJGUyhrE-YwHXDIKZ74IIMk0TW1E4sfSFrzTUkoaC0hrAyoA7EOrTA0Npfuols0zfYAwtIGQPTVaqShUcCOmZJpwEafU7uPSQ1S3nTd5Kew0JlW_Hf1x_Rht2DF0_KzkBNXyxUqfQiSQyzP3BXwAa5SyVg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLSgHIALWxE7PnB1mtRxFm6lpWqhTREUqbfKjm2pKqTQpgf4ep6zsElI3JJITiI78bxnz8xD6CKwIebnMiT1mIXENTof7vmCANxoR0qqaWb23I-8zqN7M2KjQqyeaWGUUhn5TFnmMNvLl7N4aZbKavBfeqYM6ypaY67rslyuVU68DJDLKUTAjh3Wus0mZFmhSQLrzCrb_qiikoFIewtF5eNz7sjUWqbCit9_OTP--_22UfVLr4fvPpFoB62oZBdtfrMa3EOvrfseuQLIkngAs8RzweLBELPiIV9M8UDrp1lGqMeTBD9AKq1IYzInZnEqkbhb2kpIHOXM8cUlbmDDaM6dvt9Ia25mTtwoXMqraNi-HjY7pCi3QCYhTQnXTAhpLOJsL3RC4VE4s7kDaaauK80D2xem5J0SQlCfQ2LrUA5w7xptqqsp3UeVZJaoA4ShDQTtsVZSMlfCjTwp4iDkfkzNTi49RFXTeeOX3FBjXPbb0R_Xz9F6Z9jvjXvd6PYYbZjxzNhawQmqpPOlOoW4IBVn2dfwAe_QtaM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=DRL-Based+Optimisation+for+Task+Offloading+in+Space-Air-Ground+Integrated+Networks%3A+A+Reliability-Driven+Approach&rft.au=Van+Huynh%2C+Dang&rft.au=Khosravirad%2C+Saeed+R.&rft.au=Cotton%2C+Simon+L.&rft.au=Dobre%2C+Octavia+A.&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=6958&rft.epage=6963&rft_id=info:doi/10.1109%2FICC52391.2025.11161527&rft.externalDocID=11161527 |