DRL-Based Optimisation for Task Offloading in Space-Air-Ground Integrated Networks: A Reliability-Driven Approach

This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology,...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Communications (2003) pp. 6958 - 6963
Main Authors Van Huynh, Dang, Khosravirad, Saeed R., Cotton, Simon L., Dobre, Octavia A., Duong, Trung Q.
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.06.2025
Subjects
Online AccessGet full text
ISSN1938-1883
DOI10.1109/ICC52391.2025.11161527

Cover

Abstract This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology, end-to-end communications are facilitated by relay unmanned aerial vehicles (UAVs). The formulated problem jointly optimises task offloading portions and bandwidth allocations for both ground-to-air and air-to-space links, subject to quality-of-service (QoS) requirements, transmission rates, system bandwidth, and the computing capacity of the satellite's edge server. To solve the formulated complex non-linear, non-convex, and mixed-integer problem, we propose an efficient solution underpinned by a deep reinforcement learning (DRL). Simulation results demonstrate the effectiveness of the proposed method, which achieves stable training performance and an optimised reliable offloading ratio compared to benchmark schemes.
AbstractList This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim to maximise the successful task offloading ratio for ground users communicating with a satellite's edge server. In our network topology, end-to-end communications are facilitated by relay unmanned aerial vehicles (UAVs). The formulated problem jointly optimises task offloading portions and bandwidth allocations for both ground-to-air and air-to-space links, subject to quality-of-service (QoS) requirements, transmission rates, system bandwidth, and the computing capacity of the satellite's edge server. To solve the formulated complex non-linear, non-convex, and mixed-integer problem, we propose an efficient solution underpinned by a deep reinforcement learning (DRL). Simulation results demonstrate the effectiveness of the proposed method, which achieves stable training performance and an optimised reliable offloading ratio compared to benchmark schemes.
Author Khosravirad, Saeed R.
Dobre, Octavia A.
Duong, Trung Q.
Cotton, Simon L.
Van Huynh, Dang
Author_xml – sequence: 1
  givenname: Dang
  surname: Van Huynh
  fullname: Van Huynh, Dang
  email: vdhuynh@mun.ca
  organization: Memorial University,Canada
– sequence: 2
  givenname: Saeed R.
  surname: Khosravirad
  fullname: Khosravirad, Saeed R.
  email: saeed.khosravirad@nokia-bell-labs.com
  organization: Nokia Bell Labs,USA
– sequence: 3
  givenname: Simon L.
  surname: Cotton
  fullname: Cotton, Simon L.
  email: simon.cotton@qub.ac.uk
  organization: Queen's University Belfast,UK
– sequence: 4
  givenname: Octavia A.
  surname: Dobre
  fullname: Dobre, Octavia A.
  email: odobre@mun.ca
  organization: Memorial University,Canada
– sequence: 5
  givenname: Trung Q.
  surname: Duong
  fullname: Duong, Trung Q.
  email: tduong@mun.ca
  organization: Memorial University,Canada
BookMark eNo1kNFOwjAYhavRREDewJi-QLH_ymjr3RyKS4gkyD35y1qsjG52U8Pbu0TNuTg5X3LOxRmSi1AHS8gt8AkA13dFnqeJ0DBJeJL2CGaQJvKMjLXUSghIeZqAPicD0EIxUEpckWHbvvOeawED8jFfL9kDtrakq6bzR99i5-tAXR3pBtsDXTlX1Vj6sKc-0NcGd5ZlPrJFrD9DSYvQ2X3Eru-_2O67jof2nmZ0bSuPxle-O7F59F820KxpYo27t2ty6bBq7fjPR2Tz9LjJn9lytSjybMm8Fh1DlxpTcgDJZxq0mYk-cQQtlUusQ8WlSVLJrTFGSFRCgkAFajoVvZwQI3LzO-uttdsm-iPG0_b_IfEDlcpcfA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICC52391.2025.11161527
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331505219
EISSN 1938-1883
EndPage 6963
ExternalDocumentID 11161527
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-af5bbd011706919b63bd00a1978f2efa807b2570ebbb37a83713a818443434f33
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-af5bbd011706919b63bd00a1978f2efa807b2570ebbb37a83713a818443434f33
PageCount 6
ParticipantIDs ieee_primary_11161527
PublicationCentury 2000
PublicationDate 2025-June-8
PublicationDateYYYYMMDD 2025-06-08
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-8
  day: 08
PublicationDecade 2020
PublicationTitle IEEE International Conference on Communications (2003)
PublicationTitleAbbrev ICC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052931
Score 2.3032846
Snippet This paper addresses the problem of reliable task offloading in space-air-ground integrated network (SAGIN) based edge computing systems. Specifically, we aim...
SourceID ieee
SourceType Publisher
StartPage 6958
SubjectTerms Channel allocation
Edge computing
Optimization
Quality of service
Reliability engineering
Servers
Simulation
Space-air-ground integrated networks
Training
Vehicle dynamics
Title DRL-Based Optimisation for Task Offloading in Space-Air-Ground Integrated Networks: A Reliability-Driven Approach
URI https://ieeexplore.ieee.org/document/11161527
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFG10T_ri14zf6YOvZbBCob7NzWUzuhmdyd6WlrbJMmW6sQf99d4W8Csx8Q1ICqSFnnvbc85F6DzxIeYXipNmGnESWp2PYLEkADcmUIoa6syebwes9xhej6NxKVZ3WhittSOfac8eur18NU9XdqmsAf8ls2VY19F6nLBCrFVNuxHgVlBKgAOfN_rtNuRY3KaAzcirWv6ooeIgpLuFBtXDC-bIzFvl0kvff_ky_vvttlH9S62H7z5xaAet6WwXbX4zGtxDr537G3IJgKXwEOaI55LDgyFixSOxnOGhMU9zR6fH0ww_QCKtSWu6IHZpKlO4X5lKKDwoeOPLC9zCls9c-Hy_kc7Czpu4VXqU19GoezVq90hZbIFMOc2JMJGUyhrE-YwHXDIKZ74IIMk0TW1E4sfSFrzTUkoaC0hrAyoA7EOrTA0Npfuols0zfYAwtIGQPTVaqShUcCOmZJpwEafU7uPSQ1S3nTd5Kew0JlW_Hf1x_Rht2DF0_KzkBNXyxUqfQiSQyzP3BXwAa5SyVg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLSgHIALWxE7PnB1mtRxFm6lpWqhTREUqbfKjm2pKqTQpgf4ep6zsElI3JJITiI78bxnz8xD6CKwIebnMiT1mIXENTof7vmCANxoR0qqaWb23I-8zqN7M2KjQqyeaWGUUhn5TFnmMNvLl7N4aZbKavBfeqYM6ypaY67rslyuVU68DJDLKUTAjh3Wus0mZFmhSQLrzCrb_qiikoFIewtF5eNz7sjUWqbCit9_OTP--_22UfVLr4fvPpFoB62oZBdtfrMa3EOvrfseuQLIkngAs8RzweLBELPiIV9M8UDrp1lGqMeTBD9AKq1IYzInZnEqkbhb2kpIHOXM8cUlbmDDaM6dvt9Ia25mTtwoXMqraNi-HjY7pCi3QCYhTQnXTAhpLOJsL3RC4VE4s7kDaaauK80D2xem5J0SQlCfQ2LrUA5w7xptqqsp3UeVZJaoA4ShDQTtsVZSMlfCjTwp4iDkfkzNTi49RFXTeeOX3FBjXPbb0R_Xz9F6Z9jvjXvd6PYYbZjxzNhawQmqpPOlOoW4IBVn2dfwAe_QtaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=DRL-Based+Optimisation+for+Task+Offloading+in+Space-Air-Ground+Integrated+Networks%3A+A+Reliability-Driven+Approach&rft.au=Van+Huynh%2C+Dang&rft.au=Khosravirad%2C+Saeed+R.&rft.au=Cotton%2C+Simon+L.&rft.au=Dobre%2C+Octavia+A.&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=6958&rft.epage=6963&rft_id=info:doi/10.1109%2FICC52391.2025.11161527&rft.externalDocID=11161527