HeteroSVD: Efficient SVD Accelerator on Versal ACAP with Algorithm-Hardware Co-Design
Singular value decomposition (SVD) is a matrix factorization technique widely used in signal processing and recommendation systems, etc. In general, the time complexity of SVD algorithms is cubic to the problem size, making SVD algorithms difficult to meet stringent performance requirements in real-...
Saved in:
| Published in | 2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
22.06.2025
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/DAC63849.2025.11132878 |
Cover
| Abstract | Singular value decomposition (SVD) is a matrix factorization technique widely used in signal processing and recommendation systems, etc. In general, the time complexity of SVD algorithms is cubic to the problem size, making SVD algorithms difficult to meet stringent performance requirements in real-time. However, existing FPGA and GPU solutions fall short of jointly optimizing latency, throughput, and power consumption. To settle this issue, this paper proposes HeteroSVD, a heterogeneous reconfigurable accelerator for SVD computation on the Versal ACAP platform. HeteroSVD introduces a system-level SVD decomposition mechanism and proposes an algorithm-hardware co-design method to optimize SVD ordering jointly and AI engine (AIE)-centric dataflow and placement with Versal. Furthermore, in order to improve the quality of results (QoR) and facilitate micro-architecture selection, we introduce an automatic optimization framework that performs accurate performance modeling and fast design space exploration. Experiment results demonstrate that HeteroSVD reduces the latency by 1.98 \times over existing FPGA accelerators and outperforms GPU solutions with an improvement of up to 7.22 \times in latency, 1.77 \times in throughput, and 13.18 \times in energy efficiency. |
|---|---|
| AbstractList | Singular value decomposition (SVD) is a matrix factorization technique widely used in signal processing and recommendation systems, etc. In general, the time complexity of SVD algorithms is cubic to the problem size, making SVD algorithms difficult to meet stringent performance requirements in real-time. However, existing FPGA and GPU solutions fall short of jointly optimizing latency, throughput, and power consumption. To settle this issue, this paper proposes HeteroSVD, a heterogeneous reconfigurable accelerator for SVD computation on the Versal ACAP platform. HeteroSVD introduces a system-level SVD decomposition mechanism and proposes an algorithm-hardware co-design method to optimize SVD ordering jointly and AI engine (AIE)-centric dataflow and placement with Versal. Furthermore, in order to improve the quality of results (QoR) and facilitate micro-architecture selection, we introduce an automatic optimization framework that performs accurate performance modeling and fast design space exploration. Experiment results demonstrate that HeteroSVD reduces the latency by 1.98 \times over existing FPGA accelerators and outperforms GPU solutions with an improvement of up to 7.22 \times in latency, 1.77 \times in throughput, and 13.18 \times in energy efficiency. |
| Author | Luan, Xinya Shi, Kai Lin, Zhe Zhai, Jianwang Zhao, Kang |
| Author_xml | – sequence: 1 givenname: Xinya surname: Luan fullname: Luan, Xinya email: luanxinya@bupt.edu.cn organization: Beijing University of Posts and Telecommunications – sequence: 2 givenname: Zhe surname: Lin fullname: Lin, Zhe email: linzh235@mail.sysu.edu.cn organization: Sun Yat-sen University – sequence: 3 givenname: Kai surname: Shi fullname: Shi, Kai email: shikai@bupt.edu.cn organization: Beijing University of Posts and Telecommunications – sequence: 4 givenname: Jianwang surname: Zhai fullname: Zhai, Jianwang email: zhaijw@bupt.edu.cn organization: Beijing University of Posts and Telecommunications – sequence: 5 givenname: Kang surname: Zhao fullname: Zhao, Kang email: zhaokang@bupt.edu.cn organization: Beijing University of Posts and Telecommunications |
| BookMark | eNo1j9FKwzAYhSPohc69gUheoDPJ3zSJd6GbVhgoOHc70vTPDHSNpIXh21tQr875zsUH54ZcDmlAQu45W3HOzMPa1hXo0qwEE3KeOAit9AVZGmU0AJcMWKmvyUeDE-b0vl8_0k0I0UccJjojtd5jj9lNKdM00D3m0fXU1vaNnuP0SW1_THkup6JxuTu7jLROxRrHeBxuyVVw_YjLv1yQ3dNmVzfF9vX5pbbbIhqYChNKpkXwDHwwgN4AV6CFrJxkoUWh2rbypfRClU45DB1WoXPInRNaYgWwIHe_2oiIh68cTy5_H_7Pwg_yY04s |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132878 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL(IEEE/IET Electronic Library ) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11132878 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i93t-9f4082fc03cf93ec931738256a50fbe27bb6c45c274a7aefde6fdae1aa285e633 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9f4082fc03cf93ec931738256a50fbe27bb6c45c274a7aefde6fdae1aa285e633 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11132878 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.2975335 |
| Snippet | Singular value decomposition (SVD) is a matrix factorization technique widely used in signal processing and recommendation systems, etc. In general, the time... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Field programmable gate arrays Graphics processing units Recommender systems Search problems Signal processing Signal processing algorithms Singular value decomposition Space exploration Throughput Time complexity |
| Title | HeteroSVD: Efficient SVD Accelerator on Versal ACAP with Algorithm-Hardware Co-Design |
| URI | https://ieeexplore.ieee.org/document/11132878 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dsd5PNPrwtfVAES8FWeiuT7ETEuitli-CvN0lbRUHwliwJWTK7fMnMfN8QchNLEYNUggkjQmZ77p8LDbPQhKhApOjV9u_HyWgW383lfEtW91wYRPTJZxi4po_ll7VeO1dZ15dFz9KsRVpplmzIWlvWbxTm3X7Rs19T7OgnXAa7wT_KpnjUGB6Q8W69TbLIS7BuVKA_fkkx_vuFDknnm6BHJ1_Qc0T2sDoms5FLbakfHvu3dOCVIexkaru00Nqiiw-o07qizkcGS2qtMKHOD0uL5VO9so1X5gL577BC2qtZ3yd3dMh0OJj2RmxbNYE956JhuXElpI0OhTa5QJ3bA4Kw18AEZGgU8lSpRMdS29sopICmxMSUgBEAzyQmQpyQdlVXeEqoURxQlWFqMHa67pmIIDZgzwgRSOT5Gem4LVm8bXQxFrvdOP_j-QXZd5ZxiVacX5J2s1rjlYX0Rl17U34CTlOhQQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_RJxYl38-BrurZJevFt7ELVbQzcZG8jSU9kOFsZHYK_3iTbFAXBt6QkpOS0fMk55_sOQjeMUya4pIRq6hPTs_-cr4mBJgApaAxObb8_iLIxu5_wyZqs7rgwAOCSz8CzTRfLz0u1tK6yhiuLnsTJNtrhjDG-omuteb-BnzbazZb5npgloITc2wz_UTjF4UZ3Hw02K67SRV68ZSU99fFLjPHfr3SA6t8UPTz8Ap9DtAXFERpnNrmlfHxq3-KO04Ywk7Hp4qZSBl9cSB2XBbZeMjHHxg5DbD2xuDl_Lhem8UpsKP9dLAC3StJ26R11NOp2Rq2MrOsmkFlKK5JqW0RaK58qnVJQqTkiUHMRjAT3tYQwljJSjCtzHxWxAJ1DpHMBgRBhwiGi9BjVirKAE4S1DAXI3I81MKvsntBAMC3MKSEQHML0FNXtlkzfVsoY081unP3x_BrtZqN-b9q7Gzycoz1rJZt2FYYXqFYtlnBpAL6SV86sn-_ppI4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=HeteroSVD%3A+Efficient+SVD+Accelerator+on+Versal+ACAP+with+Algorithm-Hardware+Co-Design&rft.au=Luan%2C+Xinya&rft.au=Lin%2C+Zhe&rft.au=Shi%2C+Kai&rft.au=Zhai%2C+Jianwang&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132878&rft.externalDocID=11132878 |