Self Pre-Training with Adaptive Mask Autoencoders for Variable-Contrast 3D Medical Imaging
The Masked Autoencoder (MAE) has recently demonstrated effectiveness in pre-training Vision Transformers (ViT) for analyzing natural images. By reconstructing complete images from partially masked inputs, the ViT encoder gathers contextual information to predict the missing regions. This capability...
Saved in:
| Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 1 - 5 |
|---|---|
| Main Authors | , , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
14.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-8452 |
| DOI | 10.1109/ISBI60581.2025.10981097 |
Cover
| Abstract | The Masked Autoencoder (MAE) has recently demonstrated effectiveness in pre-training Vision Transformers (ViT) for analyzing natural images. By reconstructing complete images from partially masked inputs, the ViT encoder gathers contextual information to predict the missing regions. This capability to aggregate context is especially important in medical imaging, where anatomical structures are functionally and mechanically linked to surrounding regions. However, current methods do not consider variations in the number of input images, which is typically the case in realworld Magnetic Resonance (MR) studies. To address this limitation, we propose a 3D Adaptive Masked Autoencoders (AMAE) architecture that accommodates a variable number of 3D input contrasts per subject. A magnetic resonance imaging (MRI) dataset of 45,364 subjects was used for pretraining and a subset of 1648 training, 193 validation and 215 test subjects were used for finetuning. The performance demonstrates that self pre-training of this adaptive masked autoencoders can enhance the infarct segmentation performance by 2.8%-3.7% for ViT-based segmentation models. |
|---|---|
| AbstractList | The Masked Autoencoder (MAE) has recently demonstrated effectiveness in pre-training Vision Transformers (ViT) for analyzing natural images. By reconstructing complete images from partially masked inputs, the ViT encoder gathers contextual information to predict the missing regions. This capability to aggregate context is especially important in medical imaging, where anatomical structures are functionally and mechanically linked to surrounding regions. However, current methods do not consider variations in the number of input images, which is typically the case in realworld Magnetic Resonance (MR) studies. To address this limitation, we propose a 3D Adaptive Masked Autoencoders (AMAE) architecture that accommodates a variable number of 3D input contrasts per subject. A magnetic resonance imaging (MRI) dataset of 45,364 subjects was used for pretraining and a subset of 1648 training, 193 validation and 215 test subjects were used for finetuning. The performance demonstrates that self pre-training of this adaptive masked autoencoders can enhance the infarct segmentation performance by 2.8%-3.7% for ViT-based segmentation models. |
| Author | Re, Thomas J. Liu, Han Das, Badhan Kumar Maier, Andreas Gibson, Eli Zhao, Gengyan Comaniciu, Dorin |
| Author_xml | – sequence: 1 givenname: Badhan Kumar surname: Das fullname: Das, Badhan Kumar organization: Siemens Healthineers AG – sequence: 2 givenname: Gengyan surname: Zhao fullname: Zhao, Gengyan organization: Siemens Medical Solutions USA, Inc – sequence: 3 givenname: Han surname: Liu fullname: Liu, Han organization: Siemens Medical Solutions USA, Inc – sequence: 4 givenname: Thomas J. surname: Re fullname: Re, Thomas J. organization: Siemens Medical Solutions USA, Inc – sequence: 5 givenname: Dorin surname: Comaniciu fullname: Comaniciu, Dorin organization: Siemens Medical Solutions USA, Inc – sequence: 6 givenname: Eli surname: Gibson fullname: Gibson, Eli organization: Siemens Medical Solutions USA, Inc – sequence: 7 givenname: Andreas surname: Maier fullname: Maier, Andreas organization: FAU Erlangen-Nuremberg |
| BookMark | eNo1kNFKwzAYhaMoOOfeQDAv0Jk0SZNczjq1sKGw4oU342_zZ0a7dqRV8e0tqAcOB86B7-Kck5O2a5GQK87mnDN7XWxuiowpw-cpS9V8rMxofURmVlsjBFcpU2l2TCbcSpUYqdIzMuv7NzZKSymYnJCXDTaePkVMygihDe2OfoXhlS4cHIbwiXQN_TtdfAwdtnXnMPbUd5E-QwxQNZjkXTtE6AcqbukaXaihocUediPogpx6aHqc_eWUlHfLMn9IVo_3Rb5YJcGKIbF1ZbzjXBhXOa58ZqWtfJ1l2jvU2gmfWqfHTSiorckAFDhhmanAe-mcmJLLX2xAxO0hhj3E7-3_G-IHHUxXSQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI60581.2025.10981097 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331520526 |
| EISSN | 1945-8452 |
| EndPage | 5 |
| ExternalDocumentID | 10981097 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Siemens Healthineers funderid: 10.13039/501100011699 |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i93t-9cb8fd1138dbd15f6949bfc667fde77d3f29d7dbd35ac986aa5ad3908baff4dd3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 01:53:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9cb8fd1138dbd15f6949bfc667fde77d3f29d7dbd35ac986aa5ad3908baff4dd3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10981097 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-14 |
| PublicationDateYYYYMMDD | 2025-04-14 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.297934 |
| Snippet | The Masked Autoencoder (MAE) has recently demonstrated effectiveness in pre-training Vision Transformers (ViT) for analyzing natural images. By reconstructing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Autoencoders Biomedical imaging Computer vision Image segmentation Magnetic resonance imaging Masked Autoencoders Self Pre-training Solid modeling Three-dimensional displays Training Transformers Variable Inputs Vision Transformer |
| Title | Self Pre-Training with Adaptive Mask Autoencoders for Variable-Contrast 3D Medical Imaging |
| URI | https://ieeexplore.ieee.org/document/10981097 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba8IwFA7Tp-1lN8fu5GGv6VrTpsmju4gOlIFuyF4kaU5guKlo-7Jfv5xa3QUGeyvNKYSE9Mu5fN8h5MoIPyDijEmDotrWAFNGK2ZsYsEjRBMcEoV7fdF5ih9Gyagiq5dcGAAoi88gwMcyl29nWYGhMn_ClcSMaY3UUilWZK1NQMVjYex986qGy5tddwc3Xcz6oRvYTIL11z_6qJQw0t4l_fUEVtUjk6DITZB9_NJm_PcM90jji7FHHzdYtE-2YHpAdr6JDR6SlwG8OW8EbFi1haAYhKUtq-f4z6M9vZzQVpHPUNsS65upv9DSZ-9MI72KoY7VQi9zyu9old6h3feyyVGDDNv3w9sOqzorsFfFc6YyI52NIi6tsVHihIqVcZkQqbOQppa7prKpH-OJzpQUWifachVKo52LreVHpD6dTeGYUG-ohdEx-HsQKooayXWonAITqhC4PiENXKXxfKWdMV4v0Okf78_INm4W5mui-JzU80UBFx72c3NZbvcn7zyuvA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA86D-rF18S3OXhtbZdHm-N8seo2hFUZXkbSJCDTbWztxb_efF03HyB4K80XCAnJ9_z9PoQuFHcDnGZerIBUWyvjCSWFpzTTxmmIhrEAFO50eeuJ3vdZvwKrl1gYY0xZfGZ8-Cxz-XqcFRAqczdcxJAxXUVrjFLK5nCtZUjFaUPqvPOqissJXia9qwTyfuAINpi_mP-jk0qpSO62UHexhHn9yNAvcuVnH7_YGf-9xm1U_8Ls4celNtpBK2a0iza_0Q3uoZeeebNOyHhp1RgCQxgWN7WcwKuHO3I2xM0iHwO7JVQ4Y2fS4mfnTgPAygMmq6mc5Zjc4CrBg5P3ss1RHaV3t-l1y6t6K3ivguSeyFRsdRiSWCsdMssFFcpmnEdWmyjSxDaEjtwYYTITMZeSSU1EECtpLdWa7KPaaDwyBwg7QcmVpMZZQsApqmIiA2GFUYEIDJGHqA67NJjM2TMGiw06-uP_OVpvpZ32oJ10H47RBhwcZG9CeoJq-bQwp84IyNVZefSfRECyCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Self+Pre-Training+with+Adaptive+Mask+Autoencoders+for+Variable-Contrast+3D+Medical+Imaging&rft.au=Das%2C+Badhan+Kumar&rft.au=Zhao%2C+Gengyan&rft.au=Liu%2C+Han&rft.au=Re%2C+Thomas+J.&rft.date=2025-04-14&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI60581.2025.10981097&rft.externalDocID=10981097 |