BER Degradation Prediction Using Random Forest Model in GANA Knowledge Plane Platform for 5G/5G-A Transport Network QoS Assurance
Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our...
Saved in:
| Published in | IEEE/IFIP Network Operations and Management Symposium pp. 1 - 6 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
12.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2374-9709 |
| DOI | 10.1109/NOMS57970.2025.11073649 |
Cover
| Abstract | Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our model, evaluated on multiple datasets, demonstrated high accuracy in predicting early-stage BER degradation, facilitating proactive maintenance and improving network reliability. The results underline the efficacy of Random Forest models in anticipating service degradation and minimizing disruption in telecommunications infrastructure. The BER Degradation Prediction Using Random Forest Model, together with other AI/ML algorithms required for Autonomic Management & Control (AMC) of a Multi-Layer Transport Network for 5G and Beyond play roles in the AMC operations of an ETSI GANA (Generic Autonomic Networking Architecture) Knowledge Plane (KP) for a Multi-Layer Transport Network. In this paper, we propose GANA Knowledge Plane autonomic management and control implementation architecture and solution for 5G and beyond transport network, specifically focusing on BER degradation prediction based on our ML algorithm. |
|---|---|
| AbstractList | Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our model, evaluated on multiple datasets, demonstrated high accuracy in predicting early-stage BER degradation, facilitating proactive maintenance and improving network reliability. The results underline the efficacy of Random Forest models in anticipating service degradation and minimizing disruption in telecommunications infrastructure. The BER Degradation Prediction Using Random Forest Model, together with other AI/ML algorithms required for Autonomic Management & Control (AMC) of a Multi-Layer Transport Network for 5G and Beyond play roles in the AMC operations of an ETSI GANA (Generic Autonomic Networking Architecture) Knowledge Plane (KP) for a Multi-Layer Transport Network. In this paper, we propose GANA Knowledge Plane autonomic management and control implementation architecture and solution for 5G and beyond transport network, specifically focusing on BER degradation prediction based on our ML algorithm. |
| Author | Choi, Taesang Park, Moonkook Yoon, Sangsik Kim, Jeongyoon Chaparadza, Ranganai Scheel, Cristian Zumelzu |
| Author_xml | – sequence: 1 givenname: Taesang surname: Choi fullname: Choi, Taesang email: choits@etri.re.kr organization: Electronics and Telecommunications Research Institute (ETRI) – sequence: 2 givenname: Cristian Zumelzu surname: Scheel fullname: Scheel, Cristian Zumelzu email: cristian.zumelzu@nazaries.com organization: Nazaries IT – sequence: 3 givenname: Moonkook surname: Park fullname: Park, Moonkook email: hipmk@mobigen.com organization: Mobigen – sequence: 4 givenname: Jeongyoon surname: Kim fullname: Kim, Jeongyoon email: jykim@etri.re.kr organization: Electronics and Telecommunications Research Institute (ETRI) – sequence: 5 givenname: Ranganai surname: Chaparadza fullname: Chaparadza, Ranganai email: ran4chap@yahoo.com organization: IPv6 Forum – sequence: 6 givenname: Sangsik surname: Yoon fullname: Yoon, Sangsik email: ssyoon90@etri.re.kr organization: IPv6 Forum |
| BookMark | eNo1UFFPwjAYrEYTAfkHJvYPDLp2pevjRJhGGAj4TOr6lUxHS9oZ4qP_3In6cne5u9zDddGFdRYQuo3JII6JHBaL-ZoLKciAEsp_PMFGiTxDfSlkyljMWTxi6TnqUCaSqC3KK9QN4Y2QRBBGOujrbrLC97DzSqumchYvPeiqPMmXUNkdXimr3R5PnYfQ4LnTUOPK4jwrMvxk3bEGvQO8rJU9YWOc3-MWMM-HPI8yvPHKhoPzDS6gOTr_jp_dGmchfLRBCdfo0qg6QP-Pe2gznWzGD9FskT-Os1lUSdZEUkGppBmVkFClRJqqUhghKWGaUlYqCtpoCekrIVKlnCmW6JibOKGm5Ka9pYdufmcrANgefLVX_nP7_xj7BmmfYtM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/NOMS57970.2025.11073649 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331531638 |
| EISSN | 2374-9709 |
| EndPage | 6 |
| ExternalDocumentID | 11073649 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and ICT grantid: RS-2024-00397958 funderid: 10.13039/501100014188 – fundername: Ministry of Trade, Industry and Energy grantid: P0019141,P0019816 funderid: 10.13039/501100003052 – fundername: Korea Institute for Advancement of Technology funderid: 10.13039/501100003661 |
| GroupedDBID | 6IE 6IH 6IK 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i93t-9aeca9f6ce42aa788ac7f79203d223ca2edfd9e8b009a853a34d15f142fc5f073 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:14:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9aeca9f6ce42aa788ac7f79203d223ca2edfd9e8b009a853a34d15f142fc5f073 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11073649 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-12 |
| PublicationDateYYYYMMDD | 2025-05-12 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/IFIP Network Operations and Management Symposium |
| PublicationTitleAbbrev | NOMS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0047030 |
| Score | 2.2936668 |
| Snippet | Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | 5G mobile communication 5G Multi-Layer Transport Network Agile Management Autonomic Management & Control (AMC) Degradation ETSI GANA Knowledge Plane (KP) for AMC for 5G Multi-Layer Transport Network Knowledge engineering Maintenance Prediction algorithms Predictive models Quality of service Software defined networking Software-Defined Network (SDN) Telecommunication network reliability Telecommunications |
| Title | BER Degradation Prediction Using Random Forest Model in GANA Knowledge Plane Platform for 5G/5G-A Transport Network QoS Assurance |
| URI | https://ieeexplore.ieee.org/document/11073649 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEyy8injrBta0SWwn8VigD4EaoC1St8rxQ6qABEG6sPHPsZ2mPCQkFsuKYiW6c3J3vvvuQ-g8ExwHWCcexlnmEeOAeAk3CjG2PpOCa0YdUHiYRoMHcj2l0yVY3WFhlFKu-Ey17NTl8mUhFvaorG1jFRwRto7W4ySqwFr1b5fYrbss4Ap81k5vh2Mas9g3MWBIW_XSHyQqzob0tlBaP70qHXlsLcqsJd5_NWb89-tto-YXXA_uVoZoB62pfBdtfus0uIc-LrojuLKNISoOJXO_zdC4qasagBHPZfEMlqrzrQRLkfYE8xz6nbQDN_XBG1iOIzeW1tkFMwDtt2nf68CqTTqkVWk53BdjMOpfWO4O1USTXndyOfCW7AvenOHSY1wJznQkFAk5N4EyF7GOWehjaTwKwUMltWQqMZ8t48bmc0xkQHVAQi2oNoLYR428yNUBgiyRJImoxcj6RCRmrTRem8YqCLVlPj5ETSvM2UvVX2NWy_Hoj-vHaMPq1Obwg_AENcrXhTo1rkGZnbkt8QnK4rik |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDCq4g3HljTJrGdxGOBPqBtgLZIbJXjh1QBCYJkYeOfYztNeUhILJYVxUp0vuTufPfdB8BZwhnykIochJLEwdoBcSKmN0Tb-kRwpiixQOFhHPTu8fUDeZiD1S0WRkppi89kw0xtLl9kvDBHZU0Tq6AA02WwQjDGpIRrVT9ebJR3XsLlubQZ3wzHJKShq6NAnzSqxT9oVKwV6WyAuHp-WTzy2CjypMHff7Vm_PcLboL6F2AP3i5M0RZYkuk2WP_Wa3AHfJy3R_DStIYoWZT0_SZHY6e2bgCOWCqyZ2jIOt9yaEjSnuAshd1W3IL96ugNGpYjO-bG3YV6gKTbJF2nBReN0mFcFpfDu2wMtQIUhr1D1sGk055c9Jw5_4Izoyh3KJOcURVwiX3GdKjMeKhC6rtIaJ-CM18KJaiM9IdLmbb6DGHhEeVhX3GitCB2QS3NUrkHYBIJHAXEoGRdzCO9Vmi_TSHp-cpwH--DuhHm9KXssDGt5Hjwx_VTsNqbDAfTwVXcPwRrZn9NRt_zj0Atfy3ksXYU8uTEqscnosC78Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FIFIP+Network+Operations+and+Management+Symposium&rft.atitle=BER+Degradation+Prediction+Using+Random+Forest+Model+in+GANA+Knowledge+Plane+Platform+for+5G%2F5G-A+Transport+Network+QoS+Assurance&rft.au=Choi%2C+Taesang&rft.au=Scheel%2C+Cristian+Zumelzu&rft.au=Park%2C+Moonkook&rft.au=Kim%2C+Jeongyoon&rft.date=2025-05-12&rft.pub=IEEE&rft.eissn=2374-9709&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNOMS57970.2025.11073649&rft.externalDocID=11073649 |