BER Degradation Prediction Using Random Forest Model in GANA Knowledge Plane Platform for 5G/5G-A Transport Network QoS Assurance

Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our...

Full description

Saved in:
Bibliographic Details
Published inIEEE/IFIP Network Operations and Management Symposium pp. 1 - 6
Main Authors Choi, Taesang, Scheel, Cristian Zumelzu, Park, Moonkook, Kim, Jeongyoon, Chaparadza, Ranganai, Yoon, Sangsik
Format Conference Proceeding
LanguageEnglish
Published IEEE 12.05.2025
Subjects
Online AccessGet full text
ISSN2374-9709
DOI10.1109/NOMS57970.2025.11073649

Cover

Abstract Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our model, evaluated on multiple datasets, demonstrated high accuracy in predicting early-stage BER degradation, facilitating proactive maintenance and improving network reliability. The results underline the efficacy of Random Forest models in anticipating service degradation and minimizing disruption in telecommunications infrastructure. The BER Degradation Prediction Using Random Forest Model, together with other AI/ML algorithms required for Autonomic Management & Control (AMC) of a Multi-Layer Transport Network for 5G and Beyond play roles in the AMC operations of an ETSI GANA (Generic Autonomic Networking Architecture) Knowledge Plane (KP) for a Multi-Layer Transport Network. In this paper, we propose GANA Knowledge Plane autonomic management and control implementation architecture and solution for 5G and beyond transport network, specifically focusing on BER degradation prediction based on our ML algorithm.
AbstractList Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast degradation steps ahead of time. To address the data imbalance inherent in such networks, we applied data cleaning and augmentation techniques. Our model, evaluated on multiple datasets, demonstrated high accuracy in predicting early-stage BER degradation, facilitating proactive maintenance and improving network reliability. The results underline the efficacy of Random Forest models in anticipating service degradation and minimizing disruption in telecommunications infrastructure. The BER Degradation Prediction Using Random Forest Model, together with other AI/ML algorithms required for Autonomic Management & Control (AMC) of a Multi-Layer Transport Network for 5G and Beyond play roles in the AMC operations of an ETSI GANA (Generic Autonomic Networking Architecture) Knowledge Plane (KP) for a Multi-Layer Transport Network. In this paper, we propose GANA Knowledge Plane autonomic management and control implementation architecture and solution for 5G and beyond transport network, specifically focusing on BER degradation prediction based on our ML algorithm.
Author Choi, Taesang
Park, Moonkook
Yoon, Sangsik
Kim, Jeongyoon
Chaparadza, Ranganai
Scheel, Cristian Zumelzu
Author_xml – sequence: 1
  givenname: Taesang
  surname: Choi
  fullname: Choi, Taesang
  email: choits@etri.re.kr
  organization: Electronics and Telecommunications Research Institute (ETRI)
– sequence: 2
  givenname: Cristian Zumelzu
  surname: Scheel
  fullname: Scheel, Cristian Zumelzu
  email: cristian.zumelzu@nazaries.com
  organization: Nazaries IT
– sequence: 3
  givenname: Moonkook
  surname: Park
  fullname: Park, Moonkook
  email: hipmk@mobigen.com
  organization: Mobigen
– sequence: 4
  givenname: Jeongyoon
  surname: Kim
  fullname: Kim, Jeongyoon
  email: jykim@etri.re.kr
  organization: Electronics and Telecommunications Research Institute (ETRI)
– sequence: 5
  givenname: Ranganai
  surname: Chaparadza
  fullname: Chaparadza, Ranganai
  email: ran4chap@yahoo.com
  organization: IPv6 Forum
– sequence: 6
  givenname: Sangsik
  surname: Yoon
  fullname: Yoon, Sangsik
  email: ssyoon90@etri.re.kr
  organization: IPv6 Forum
BookMark eNo1UFFPwjAYrEYTAfkHJvYPDLp2pevjRJhGGAj4TOr6lUxHS9oZ4qP_3In6cne5u9zDddGFdRYQuo3JII6JHBaL-ZoLKciAEsp_PMFGiTxDfSlkyljMWTxi6TnqUCaSqC3KK9QN4Y2QRBBGOujrbrLC97DzSqumchYvPeiqPMmXUNkdXimr3R5PnYfQ4LnTUOPK4jwrMvxk3bEGvQO8rJU9YWOc3-MWMM-HPI8yvPHKhoPzDS6gOTr_jp_dGmchfLRBCdfo0qg6QP-Pe2gznWzGD9FskT-Os1lUSdZEUkGppBmVkFClRJqqUhghKWGaUlYqCtpoCekrIVKlnCmW6JibOKGm5Ka9pYdufmcrANgefLVX_nP7_xj7BmmfYtM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/NOMS57970.2025.11073649
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331531638
EISSN 2374-9709
EndPage 6
ExternalDocumentID 11073649
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and ICT
  grantid: RS-2024-00397958
  funderid: 10.13039/501100014188
– fundername: Ministry of Trade, Industry and Energy
  grantid: P0019141,P0019816
  funderid: 10.13039/501100003052
– fundername: Korea Institute for Advancement of Technology
  funderid: 10.13039/501100003661
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-9aeca9f6ce42aa788ac7f79203d223ca2edfd9e8b009a853a34d15f142fc5f073
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9aeca9f6ce42aa788ac7f79203d223ca2edfd9e8b009a853a34d15f142fc5f073
PageCount 6
ParticipantIDs ieee_primary_11073649
PublicationCentury 2000
PublicationDate 2025-May-12
PublicationDateYYYYMMDD 2025-05-12
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-12
  day: 12
PublicationDecade 2020
PublicationTitle IEEE/IFIP Network Operations and Management Symposium
PublicationTitleAbbrev NOMS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0047030
Score 2.2936668
Snippet Leveraging Random Forest models, we trained our algorithm on real-world data from optical connections and employed a sliding window approach to forecast...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 5G mobile communication
5G Multi-Layer Transport Network
Agile Management
Autonomic Management & Control (AMC)
Degradation
ETSI GANA Knowledge Plane (KP) for AMC for 5G Multi-Layer Transport Network
Knowledge engineering
Maintenance
Prediction algorithms
Predictive models
Quality of service
Software defined networking
Software-Defined Network (SDN)
Telecommunication network reliability
Telecommunications
Title BER Degradation Prediction Using Random Forest Model in GANA Knowledge Plane Platform for 5G/5G-A Transport Network QoS Assurance
URI https://ieeexplore.ieee.org/document/11073649
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEyy8injrBta0SWwn8VigD4EaoC1St8rxQ6qABEG6sPHPsZ2mPCQkFsuKYiW6c3J3vvvuQ-g8ExwHWCcexlnmEeOAeAk3CjG2PpOCa0YdUHiYRoMHcj2l0yVY3WFhlFKu-Ey17NTl8mUhFvaorG1jFRwRto7W4ySqwFr1b5fYrbss4Ap81k5vh2Mas9g3MWBIW_XSHyQqzob0tlBaP70qHXlsLcqsJd5_NWb89-tto-YXXA_uVoZoB62pfBdtfus0uIc-LrojuLKNISoOJXO_zdC4qasagBHPZfEMlqrzrQRLkfYE8xz6nbQDN_XBG1iOIzeW1tkFMwDtt2nf68CqTTqkVWk53BdjMOpfWO4O1USTXndyOfCW7AvenOHSY1wJznQkFAk5N4EyF7GOWehjaTwKwUMltWQqMZ8t48bmc0xkQHVAQi2oNoLYR428yNUBgiyRJImoxcj6RCRmrTRem8YqCLVlPj5ETSvM2UvVX2NWy_Hoj-vHaMPq1Obwg_AENcrXhTo1rkGZnbkt8QnK4rik
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDCq4g3HljTJrGdxGOBPqBtgLZIbJXjh1QBCYJkYeOfYztNeUhILJYVxUp0vuTufPfdB8BZwhnykIochJLEwdoBcSKmN0Tb-kRwpiixQOFhHPTu8fUDeZiD1S0WRkppi89kw0xtLl9kvDBHZU0Tq6AA02WwQjDGpIRrVT9ebJR3XsLlubQZ3wzHJKShq6NAnzSqxT9oVKwV6WyAuHp-WTzy2CjypMHff7Vm_PcLboL6F2AP3i5M0RZYkuk2WP_Wa3AHfJy3R_DStIYoWZT0_SZHY6e2bgCOWCqyZ2jIOt9yaEjSnuAshd1W3IL96ugNGpYjO-bG3YV6gKTbJF2nBReN0mFcFpfDu2wMtQIUhr1D1sGk055c9Jw5_4Izoyh3KJOcURVwiX3GdKjMeKhC6rtIaJ-CM18KJaiM9IdLmbb6DGHhEeVhX3GitCB2QS3NUrkHYBIJHAXEoGRdzCO9Vmi_TSHp-cpwH--DuhHm9KXssDGt5Hjwx_VTsNqbDAfTwVXcPwRrZn9NRt_zj0Atfy3ksXYU8uTEqscnosC78Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FIFIP+Network+Operations+and+Management+Symposium&rft.atitle=BER+Degradation+Prediction+Using+Random+Forest+Model+in+GANA+Knowledge+Plane+Platform+for+5G%2F5G-A+Transport+Network+QoS+Assurance&rft.au=Choi%2C+Taesang&rft.au=Scheel%2C+Cristian+Zumelzu&rft.au=Park%2C+Moonkook&rft.au=Kim%2C+Jeongyoon&rft.date=2025-05-12&rft.pub=IEEE&rft.eissn=2374-9709&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNOMS57970.2025.11073649&rft.externalDocID=11073649