A New Constrained CCPD Approach Applied to Multi-frequency Dynamic Functional Network Connectivity Analysis

Dynamic functional network connectivity (dFNC) analysis is widely used to study brain disorders like schizophrenia, but most previous researches disregard the frequency profiles. This paper constructs two three-way multi-frequency dFNC tensors for healthy controls (HCs) and schizophrenia patients (S...

Full description

Saved in:
Bibliographic Details
Published in2025 2nd International Conference on Electronic Engineering and Information Systems (EEISS) pp. 1 - 6
Main Authors Kuang, Li-Dan, Tang, Ting, Zhu, Hao
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2025
Subjects
Online AccessGet full text
DOI10.1109/EEISS65394.2025.11085431

Cover

Abstract Dynamic functional network connectivity (dFNC) analysis is widely used to study brain disorders like schizophrenia, but most previous researches disregard the frequency profiles. This paper constructs two three-way multi-frequency dFNC tensors for healthy controls (HCs) and schizophrenia patients (SZs) using group independent component analysis and a filter-banked connectivity approach. Coupled canonical polyadic decomposition (CCPD) under sparsity and low-rank constraints is then proposed for separating these tensors into shared connectivity loading matrix, group-specific time and frequency weights, and group-specific subject intensities. Results of the Open Center of Biomedical Research Excellence (COBRE) schizophrenia dataset demonstrate the advantage of the proposed method and reveal significant independent component networks (ICNs) connectivity differences and altered temporal dynamics in SZs, particularly prolonged state 3 occupancy at low and high frequency bands and fewer state transitions. These findings provide new insights into functional dynamics of schizophrenia.
AbstractList Dynamic functional network connectivity (dFNC) analysis is widely used to study brain disorders like schizophrenia, but most previous researches disregard the frequency profiles. This paper constructs two three-way multi-frequency dFNC tensors for healthy controls (HCs) and schizophrenia patients (SZs) using group independent component analysis and a filter-banked connectivity approach. Coupled canonical polyadic decomposition (CCPD) under sparsity and low-rank constraints is then proposed for separating these tensors into shared connectivity loading matrix, group-specific time and frequency weights, and group-specific subject intensities. Results of the Open Center of Biomedical Research Excellence (COBRE) schizophrenia dataset demonstrate the advantage of the proposed method and reveal significant independent component networks (ICNs) connectivity differences and altered temporal dynamics in SZs, particularly prolonged state 3 occupancy at low and high frequency bands and fewer state transitions. These findings provide new insights into functional dynamics of schizophrenia.
Author Tang, Ting
Kuang, Li-Dan
Zhu, Hao
Author_xml – sequence: 1
  givenname: Li-Dan
  surname: Kuang
  fullname: Kuang, Li-Dan
  email: kuangld@csust.edu.cn
  organization: Changsha University of Science and Technology,School of Computer Science and Technology,Changsha,China
– sequence: 2
  givenname: Ting
  surname: Tang
  fullname: Tang, Ting
  email: 1831948522@qq.com
  organization: Changsha University of Science and Technology,School of Computer Science and Technology,Changsha,China
– sequence: 3
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  email: 1820894968@qq.com
  organization: Changsha University of Science and Technology,School of Computer Science and Technology,Changsha,China
BookMark eNo1kMtOwzAQRY0ECyj9Axb-gRQ7jhPPMkpTqFQeUruvjD0RVlMnJA5V_p5EwGpGZ6Sje-eOXPvGIyGUsxXnDB7Lcrvfp1JAsopZLGeoZCL4FVlCBkoILmMRA9ySU05f8UKLxveh086jpUXxvqZ523aNNp_zUruJhoa-DHVwUdXh14DejHQ9en12hm4Gb4JrvK4nV7g03Wn2eZzgtwsjzafL2Lv-ntxUuu5x-TcX5LApD8VztHt72hb5LnIgQpRBlaCdIiJTiY7lh42NAIksA60qLjmwFLRV0gKkGiTPKqNtxoVNk1RNvRbk4VfrEPHYdu6su_H4_wLxA4o6VwM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EEISS65394.2025.11085431
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331523299
EndPage 6
ExternalDocumentID 11085431
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Changsha University of Science and Technology
  funderid: 10.13039/501100004832
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-79f4ed331e084a25bd2c395e079a8f1519069ad85d996a9517fcad713d6468523
IEDL.DBID RIE
IngestDate Wed Aug 20 06:20:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-79f4ed331e084a25bd2c395e079a8f1519069ad85d996a9517fcad713d6468523
PageCount 6
ParticipantIDs ieee_primary_11085431
PublicationCentury 2000
PublicationDate 2025-May-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-23
  day: 23
PublicationDecade 2020
PublicationTitle 2025 2nd International Conference on Electronic Engineering and Information Systems (EEISS)
PublicationTitleAbbrev EEISS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9123971
Snippet Dynamic functional network connectivity (dFNC) analysis is widely used to study brain disorders like schizophrenia, but most previous researches disregard the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Coupled canonical polyadic decomposition (CCPD)
Dynamic functional network connection (dFNC)
Frequency band
High frequency
Independent component analysis
Information filters
Information systems
Loading
Low-rank constraint
Matrix decomposition
Schizophrenia
Spatiotemporal phenomena
Tensors
Time-frequency analysis
Title A New Constrained CCPD Approach Applied to Multi-frequency Dynamic Functional Network Connectivity Analysis
URI https://ieeexplore.ieee.org/document/11085431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ08qTvwmB6_puqZJk-PoNqbgGGzCbqNJXkAGm4zuoH-9-WgVBcFbKSUpeZCX9_L7QOhBKGM0NZbIXFuSW6pI5eXuJFC3ExpQyvrWwPOMT1_ypxVbNWT1wIUBgAA-g8Q_hrt8s9MH3yrre8i65253UKcQPJK1WnROKvvj8eNi4aVWfa8kY0n7-Q_jlJA3Jido1s4Y4SKb5FCrRH_8EmP89y-dot43RQ_Pv5LPGTqC7TnaDLHbtLA34QzWD2BwWc5HeNgIh-PmzInrHQ7MW2L3EUr9jkfRmh5PXKKL_UE3VoCI4wCG0dFmArcqJj20nIyX5ZQ0bgrkVdKaFNLmYCgdQCryKmPKZJpKBmkhK2Fd3pcpl5URzLgKyIVrUFhdGVfCGp5z4crVC9Td7rZwibB1h7ZUeSU5NyZnSjFTyIHQlANPocquUM8v1Pot6mWs2zW6_uP9DTr28fJ38hm9Rd16f4A7l-prdR9C_AnCB6sl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXht1zUfbY5jbmy6jcEm7Daa5AVksMnoDvrXm49WURC8lUKTkgd5eS-_D4Qecqm1ItpEgioTUUNkVDi5OwHE7oQapDSuNTCe8MELfVqwRUVW91wYAPDgM4jdo7_L1xu1c62yloOsO-72PjpglFIW6Fo1PicRrV5vOJs5sVXXLUlZXH_wwzrFZ47-MZrUcwbAyCrelTJWH7_kGP_9Uyeo-U3Sw9Ov9HOK9mB9hlYdbLct7Gw4vfkDaNztTh9xp5IOx9WpE5cb7Lm3kdkGMPU7fgzm9LhvU13oENqxPEgceziMCkYTuNYxaaJ5vzfvDqLKTyF6FaSMMmEoaELakOS0SJnUqSKCQZKJIjc284uEi0LnTNsayAasnRlVaFvEak55bgvWc9RYb9ZwgbCxx7ZEOi05OyZnUjKdiXauCAeeQJFeoqZbqOVbUMxY1mt09cf7e3Q4mI9Hy9Fw8nyNjlzs3A19Sm5Qo9zu4NYm_lLe-XB_AubOrnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+2nd+International+Conference+on+Electronic+Engineering+and+Information+Systems+%28EEISS%29&rft.atitle=A+New+Constrained+CCPD+Approach+Applied+to+Multi-frequency+Dynamic+Functional+Network+Connectivity+Analysis&rft.au=Kuang%2C+Li-Dan&rft.au=Tang%2C+Ting&rft.au=Zhu%2C+Hao&rft.date=2025-05-23&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FEEISS65394.2025.11085431&rft.externalDocID=11085431