Explainable AI in Credit Card Fraud Detection: SHAP and LIME for Machine Learning Models
With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate...
Saved in:
Published in | International Conference on Signal Processing and Communication (Online) pp. 387 - 392 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-444X |
DOI | 10.1109/ICSC64553.2025.10968935 |
Cover
Abstract | With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate is limited. To address this issue, we have implemented two explainable AI (XAI) methods - Local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) across eight machine learning models, which include logistic regression, decision tree, random forest, support vector machine, extreme gradient boost, naive bayes classifier, k-nearest neighbors, and a basic neural network. The results show how individual features of the data set contribute to the decision of a specific prediction. The detailed code for the project is provided here. |
---|---|
AbstractList | With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate is limited. To address this issue, we have implemented two explainable AI (XAI) methods - Local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) across eight machine learning models, which include logistic regression, decision tree, random forest, support vector machine, extreme gradient boost, naive bayes classifier, k-nearest neighbors, and a basic neural network. The results show how individual features of the data set contribute to the decision of a specific prediction. The detailed code for the project is provided here. |
Author | Keerthana, Chirumamilla Satya Sadagopan, Poorvie Nalluri, Siri Chandana Muskaan, Simrah |
Author_xml | – sequence: 1 givenname: Chirumamilla Satya surname: Keerthana fullname: Keerthana, Chirumamilla Satya email: csatyak21@iitk.ac.in organization: IIT Kanpur,Electrical Engineering,Kanpur,India – sequence: 2 givenname: Siri Chandana surname: Nalluri fullname: Nalluri, Siri Chandana email: siricn23@iitk.ac.in organization: IIT Kanpur,Electrical Engineering,Kanpur,India – sequence: 3 givenname: Simrah surname: Muskaan fullname: Muskaan, Simrah email: simrahm23@iitk.ac.in organization: IIT Kanpur,Electrical Engineering,Kanpur,India – sequence: 4 givenname: Poorvie surname: Sadagopan fullname: Sadagopan, Poorvie email: poorvies23@iitk.ac.in organization: IIT Kanpur,Computer Science and Engineering,Kanpur,India |
BookMark | eNo1kN1Kw0AUhFdRsNa-geB5gdT9TXa9C7G1gRSF9qJ3Zbt7qitxUzYR9O0NqFcDM_AxM9fkInYRCbljdM4YNfd1talyqZSYc8rVfLRybYQ6IzNTGC0EU4xpQ8_JhOdSZFLK3RWZ9f07pVRwKgrFJmS3-Dq1NkR7aBHKGkKEKqEPA1Q2eVgm--nhEQd0Q-jiA2xW5QvY6KGp1ws4dgnW1r2FiNCgTTHEV1h3Htv-hlwebdvj7E-nZLtcbKtV1jw_1VXZZMGIISto7pjjh8Iz5J6PrawXLmeWe22sdF5aTQsmjHZjpCTScSJHZO6omfZaTMntLzYg4v6UwodN3_v_L8QP1VxTIw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSC64553.2025.10968935 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331511890 |
EISSN | 2643-444X |
EndPage | 392 |
ExternalDocumentID | 10968935 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-706c1c2b7d1e2d2203ad3c61a2d89a4cd4a8071398c03a54e08932ee1cf818d83 |
IEDL.DBID | RIE |
IngestDate | Wed Apr 30 05:50:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-706c1c2b7d1e2d2203ad3c61a2d89a4cd4a8071398c03a54e08932ee1cf818d83 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10968935 |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb.-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Signal Processing and Communication (Online) |
PublicationTitleAbbrev | ICSC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203751 |
Score | 1.9044513 |
Snippet | With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 387 |
SubjectTerms | Accuracy Credit card fraud detection Credit cards Explainable AI Feature extraction Fraud LIME Machine learning Machine learning models Nearest neighbor methods Random forests SHAP Signal processing Support vector machines |
Title | Explainable AI in Credit Card Fraud Detection: SHAP and LIME for Machine Learning Models |
URI | https://ieeexplore.ieee.org/document/10968935 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7OJ33xNvFOHnxtTdP0Et9G3diEjcEm7G2kyakMpZPZvvjrPcm6eQHBt9KmkJ60OZd-33cIueVJzJSQ2nM1JqES6eUhME86dTkmU6NsaWA4ivtP4nEWzRqyuuPCAIADn4FvD92_fLPUtS2V4RcuY_SvUYu0kkSuyVrbgkrIbTvXoMFw4dC7QTbJYhFFIaaBPPI3d__oo-LcSO-AjDYTWKNHXvy6yn398Uub8d8zPCTtL8YeHW990RHZgfKY7H8TGzwhMwu3a7hStDOgi5JmKxxe0QzfEooRbG3oA1QOm1Xe00m_M6aqNBT3ty7F2JYOHfASaKPJ-kxtI7XX9zaZ9rrTrO81fRW8hQwrL2GxDjTPExMANxzNpkyo40Bxk0oltBEqtbmrTDVeigQwfCIOEOgCvbtJw1OyWy5LOCNUFEyDKnLMOrgAFUuZc9wvQwzCWMFyfU7a1kbzt7Vyxnxjnos_zl-SPbtUjjLOrshutarhGp1-ld-4xf4EO7Go-Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNcBxnMbcqtEqhrSq1SL1Vju2gCpSiklz4esZuWhYJiVvk2JE9TjxL3ptB6IZGIRGMS8fGmJiIuJP5mjjcZpcjPFbChAb6gzB9Yg-TYFKT1S0XRmttwWfaNZf2X76ay8qEyuAL5yHo12ATbQXwKLqka61DKj41BV29GsUFnW-7ySgJWRD44AjSwF2N_1FJxSqSzh4arKawxI-8uFWZufLjV3bGf89xHzW_OHt4uNZGB2hDF4do91u6wSM0MYC7mi2FW108K3CygO4lTuA9wWDDVgrf69Kis4o7PEpbQywKheGEa2OwbnHfQi81rrOyPmNTSu31vYnGnfY4SZ26soIz437pRCSUnqRZpDxNFQWxCeXL0BNUxVwwqZiIjffKYwm3AqYJrIhq7ckc9LuK_WPUKOaFPkGY5URqkWfgd1CmRch5RuHE9MEMIznJ5ClqGhlN35a5M6Yr8Zz90X6NttNxvzftdQeP52jHbJslkJML1CgXlb4EE6DMruzGfwJC7qxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Explainable+AI+in+Credit+Card+Fraud+Detection%3A+SHAP+and+LIME+for+Machine+Learning+Models&rft.au=Keerthana%2C+Chirumamilla+Satya&rft.au=Nalluri%2C+Siri+Chandana&rft.au=Muskaan%2C+Simrah&rft.au=Sadagopan%2C+Poorvie&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=387&rft.epage=392&rft_id=info:doi/10.1109%2FICSC64553.2025.10968935&rft.externalDocID=10968935 |