Explainable AI in Credit Card Fraud Detection: SHAP and LIME for Machine Learning Models

With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Signal Processing and Communication (Online) pp. 387 - 392
Main Authors Keerthana, Chirumamilla Satya, Nalluri, Siri Chandana, Muskaan, Simrah, Sadagopan, Poorvie
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.02.2025
Subjects
Online AccessGet full text
ISSN2643-444X
DOI10.1109/ICSC64553.2025.10968935

Cover

Abstract With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate is limited. To address this issue, we have implemented two explainable AI (XAI) methods - Local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) across eight machine learning models, which include logistic regression, decision tree, random forest, support vector machine, extreme gradient boost, naive bayes classifier, k-nearest neighbors, and a basic neural network. The results show how individual features of the data set contribute to the decision of a specific prediction. The detailed code for the project is provided here.
AbstractList With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have been outper-formed by machine learning techniques. However, the understanding behind the classification of transactions as fraud or legitimate is limited. To address this issue, we have implemented two explainable AI (XAI) methods - Local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) across eight machine learning models, which include logistic regression, decision tree, random forest, support vector machine, extreme gradient boost, naive bayes classifier, k-nearest neighbors, and a basic neural network. The results show how individual features of the data set contribute to the decision of a specific prediction. The detailed code for the project is provided here.
Author Keerthana, Chirumamilla Satya
Sadagopan, Poorvie
Nalluri, Siri Chandana
Muskaan, Simrah
Author_xml – sequence: 1
  givenname: Chirumamilla Satya
  surname: Keerthana
  fullname: Keerthana, Chirumamilla Satya
  email: csatyak21@iitk.ac.in
  organization: IIT Kanpur,Electrical Engineering,Kanpur,India
– sequence: 2
  givenname: Siri Chandana
  surname: Nalluri
  fullname: Nalluri, Siri Chandana
  email: siricn23@iitk.ac.in
  organization: IIT Kanpur,Electrical Engineering,Kanpur,India
– sequence: 3
  givenname: Simrah
  surname: Muskaan
  fullname: Muskaan, Simrah
  email: simrahm23@iitk.ac.in
  organization: IIT Kanpur,Electrical Engineering,Kanpur,India
– sequence: 4
  givenname: Poorvie
  surname: Sadagopan
  fullname: Sadagopan, Poorvie
  email: poorvies23@iitk.ac.in
  organization: IIT Kanpur,Computer Science and Engineering,Kanpur,India
BookMark eNo1kN1Kw0AUhFdRsNa-geB5gdT9TXa9C7G1gRSF9qJ3Zbt7qitxUzYR9O0NqFcDM_AxM9fkInYRCbljdM4YNfd1talyqZSYc8rVfLRybYQ6IzNTGC0EU4xpQ8_JhOdSZFLK3RWZ9f07pVRwKgrFJmS3-Dq1NkR7aBHKGkKEKqEPA1Q2eVgm--nhEQd0Q-jiA2xW5QvY6KGp1ws4dgnW1r2FiNCgTTHEV1h3Htv-hlwebdvj7E-nZLtcbKtV1jw_1VXZZMGIISto7pjjh8Iz5J6PrawXLmeWe22sdF5aTQsmjHZjpCTScSJHZO6omfZaTMntLzYg4v6UwodN3_v_L8QP1VxTIw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC64553.2025.10968935
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331511890
EISSN 2643-444X
EndPage 392
ExternalDocumentID 10968935
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-706c1c2b7d1e2d2203ad3c61a2d89a4cd4a8071398c03a54e08932ee1cf818d83
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-706c1c2b7d1e2d2203ad3c61a2d89a4cd4a8071398c03a54e08932ee1cf818d83
PageCount 6
ParticipantIDs ieee_primary_10968935
PublicationCentury 2000
PublicationDate 2025-Feb.-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-20
  day: 20
PublicationDecade 2020
PublicationTitle International Conference on Signal Processing and Communication (Online)
PublicationTitleAbbrev ICSC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203751
Score 1.9044513
Snippet With the rapid growth of e-commerce and online banking, credit card scams have become a significant challenge. Traditional approaches to detecting scams have...
SourceID ieee
SourceType Publisher
StartPage 387
SubjectTerms Accuracy
Credit card fraud detection
Credit cards
Explainable AI
Feature extraction
Fraud
LIME
Machine learning
Machine learning models
Nearest neighbor methods
Random forests
SHAP
Signal processing
Support vector machines
Title Explainable AI in Credit Card Fraud Detection: SHAP and LIME for Machine Learning Models
URI https://ieeexplore.ieee.org/document/10968935
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7OJ33xNvFOHnxtTdP0Et9G3diEjcEm7G2kyakMpZPZvvjrPcm6eQHBt9KmkJ60OZd-33cIueVJzJSQ2nM1JqES6eUhME86dTkmU6NsaWA4ivtP4nEWzRqyuuPCAIADn4FvD92_fLPUtS2V4RcuY_SvUYu0kkSuyVrbgkrIbTvXoMFw4dC7QTbJYhFFIaaBPPI3d__oo-LcSO-AjDYTWKNHXvy6yn398Uub8d8zPCTtL8YeHW990RHZgfKY7H8TGzwhMwu3a7hStDOgi5JmKxxe0QzfEooRbG3oA1QOm1Xe00m_M6aqNBT3ty7F2JYOHfASaKPJ-kxtI7XX9zaZ9rrTrO81fRW8hQwrL2GxDjTPExMANxzNpkyo40Bxk0oltBEqtbmrTDVeigQwfCIOEOgCvbtJw1OyWy5LOCNUFEyDKnLMOrgAFUuZc9wvQwzCWMFyfU7a1kbzt7Vyxnxjnos_zl-SPbtUjjLOrshutarhGp1-ld-4xf4EO7Go-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNcBxnMbcqtEqhrSq1SL1Vju2gCpSiklz4esZuWhYJiVvk2JE9TjxL3ptB6IZGIRGMS8fGmJiIuJP5mjjcZpcjPFbChAb6gzB9Yg-TYFKT1S0XRmttwWfaNZf2X76ay8qEyuAL5yHo12ATbQXwKLqka61DKj41BV29GsUFnW-7ySgJWRD44AjSwF2N_1FJxSqSzh4arKawxI-8uFWZufLjV3bGf89xHzW_OHt4uNZGB2hDF4do91u6wSM0MYC7mi2FW108K3CygO4lTuA9wWDDVgrf69Kis4o7PEpbQywKheGEa2OwbnHfQi81rrOyPmNTSu31vYnGnfY4SZ26soIz437pRCSUnqRZpDxNFQWxCeXL0BNUxVwwqZiIjffKYwm3AqYJrIhq7ckc9LuK_WPUKOaFPkGY5URqkWfgd1CmRch5RuHE9MEMIznJ5ClqGhlN35a5M6Yr8Zz90X6NttNxvzftdQeP52jHbJslkJML1CgXlb4EE6DMruzGfwJC7qxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Explainable+AI+in+Credit+Card+Fraud+Detection%3A+SHAP+and+LIME+for+Machine+Learning+Models&rft.au=Keerthana%2C+Chirumamilla+Satya&rft.au=Nalluri%2C+Siri+Chandana&rft.au=Muskaan%2C+Simrah&rft.au=Sadagopan%2C+Poorvie&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=387&rft.epage=392&rft_id=info:doi/10.1109%2FICSC64553.2025.10968935&rft.externalDocID=10968935