Steganography Detection using Convolutional Neural Networks: A Deep Learning Approach

Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We impl...

Full description

Saved in:
Bibliographic Details
Published in2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN) pp. 981 - 985
Main Authors G, Saravana Gokul, Kumar K, Deepak, S, Senthil Pandi, P, Kumar, S, Monika, U, Neha M
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.05.2025
Subjects
Online AccessGet full text
DOI10.1109/ICPCSN65854.2025.11035753

Cover

Abstract Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We implement and compare the performance of LeNet-5 and AlexNet architectures in classifying images as either clean or stego. The dataset comprises images embedded using the Least Significant Bit (LSB) technique. The models are then trained with augmented image data and then evaluated using various accuracy metrics. Experimental results indicate that AlexNet, with its deeper architecture, achieves higher accuracy than LeNet-5 in identifying stego-images. The findings demonstrate the potency of deep learning in automated steganalysis, highlighting the potential for CNNs in cybersecurity applications.
AbstractList Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We implement and compare the performance of LeNet-5 and AlexNet architectures in classifying images as either clean or stego. The dataset comprises images embedded using the Least Significant Bit (LSB) technique. The models are then trained with augmented image data and then evaluated using various accuracy metrics. Experimental results indicate that AlexNet, with its deeper architecture, achieves higher accuracy than LeNet-5 in identifying stego-images. The findings demonstrate the potency of deep learning in automated steganalysis, highlighting the potential for CNNs in cybersecurity applications.
Author G, Saravana Gokul
S, Monika
P, Kumar
U, Neha M
Kumar K, Deepak
S, Senthil Pandi
Author_xml – sequence: 1
  givenname: Saravana Gokul
  surname: G
  fullname: G, Saravana Gokul
  email: sharavana.ssg@gmail.com
  organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India
– sequence: 2
  givenname: Deepak
  surname: Kumar K
  fullname: Kumar K, Deepak
  email: kdeepak.srmit@gmail.com
  organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India
– sequence: 3
  givenname: Senthil Pandi
  surname: S
  fullname: S, Senthil Pandi
  email: mailtosenthil.ks@gmail.com
  organization: Easwari Engineering College,Department of CSE,Chennai,India
– sequence: 4
  givenname: Kumar
  surname: P
  fullname: P, Kumar
  email: kumar@rajalakshmi.edu.in
  organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India
– sequence: 5
  givenname: Monika
  surname: S
  fullname: S, Monika
  email: 210701166@rajalakshmi.edu.in
  organization: REC,Department of CSE,Chennai,India
– sequence: 6
  givenname: Neha M
  surname: U
  fullname: U, Neha M
  email: 210701178@rajalakshmi.edu.in
  organization: REC,Department of CSE,Chennai,India
BookMark eNo1j8lOwzAYhI0EByh9Aw7mAVK8YMfmFoWtUlSQWs6VY_9NI4IdOQ6ob0_Dcvo0o5mR5gKd-uABoWtKFpQSfbMsX8v1SgolbheMMDG5XOSCn6C5zrXinAouqObn6G2doDE-NNH0-wO-hwQ2tcHjcWh9g8vgP0M3To7p8ArG-IP0FeL7cIeLYwF6XIGJfooXfR-DsftLdLYz3QDzP87Q5vFhUz5n1cvTsiyqrNU8ZcIZy4BIrqUiNdvVTlipKHNGU5vX6iiYAubyWtdSS02YdA6scpzmyhnCZ-jqd7YFgG0f2w8TD9v_s_wbYXNQgg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPCSN65854.2025.11035753
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331535193
EndPage 985
ExternalDocumentID 11035753
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-5dac2e0639680b2fbd5c6812da91c7b8c6828e2d7b9b6969026ddec8d3178da03
IEDL.DBID RIE
IngestDate Wed Jun 25 06:00:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-5dac2e0639680b2fbd5c6812da91c7b8c6828e2d7b9b6969026ddec8d3178da03
PageCount 5
ParticipantIDs ieee_primary_11035753
PublicationCentury 2000
PublicationDate 2025-May-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-14
  day: 14
PublicationDecade 2020
PublicationTitle 2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN)
PublicationTitleAbbrev ICPCSN
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9132898
Snippet Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses...
SourceID ieee
SourceType Publisher
StartPage 981
SubjectTerms Accuracy
AlexNet
CNN
Computer architecture
Convolutional neural networks
Data models
Deep learning
Digital images
LeNet-5
Measurement
Pervasive computing
Social networking (online)
Steganalysis
Steganography
Steganography Detection
Title Steganography Detection using Convolutional Neural Networks: A Deep Learning Approach
URI https://ieeexplore.ieee.org/document/11035753
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfuoN4UnHibyJ4bdeladp4G9MxBcdgG-w28uN1iNIN7Tz415tkmaIgeOoPGhKSku9L3nufAFwLzCiXzq2eJUnEOOORNCmPjDXeFTOSc48Uehzw_oQ9TLNpSFb3uTCI6IPPMHa33pdvFnrltspaVqpSa16k27Cd52KdrLUDV4Gb2brvDrujgZVUv1lCs3jz_Y-TU7xw9PZgsKlyHS_yHK9qFeuPXzTGf7dpH5rfOXpk-KU-B7CF1SFMRjXOZRUw1OQWax9pVREX3j4ntuh7-NXkC3FcDn_xgeBvN6RjC-CSBOTqnHQCb7wJ497duNuPwsEJ0ZNI6ygzUlN0tgcvEkVLZTLtMGNGirbOVWEfaIHU5EooLuzymHI7yenCWFuiMDJJj6BRLSo8BlJoZFSWpbGrDqvlmWBc0lxI7TCEeVKeQNN1yWy5RmPMNr1x-sf7M9h1I-Pc7212Do36dYUXVtVrdelH8xOPdKLz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fS8MwEMcPnaA-qTjxtxF8bdelTdr6NqZj060MtsHeRn61iNIN7XzwrzfJMkVB8Kk_4GhJSr93ubtPAG5SRTBlJq1OgsCLaEQ9JkPqSe2880gySi1SaJDR7iR6mJKpa1a3vTBKKVt8pnxzanP5ci6WZqmsoaUq1O5FuAlbRIcV8apdaxuuHTmz0WsP26NMi6pdLsHEX1v82DvFSkdnD7L1Q1cVI8_-suK--PjFY_z3W-1D_btLDw2_9OcANlR5CJNRpQpWOhA1ulOVrbUqkSlwL5A2fXcfG3tBhsxhD7YU_O0WtbSBWiAHXS1QyxHH6zDu3I_bXc9tneA9pWHlEckEVsb7oEnAcc4lEQY0JlnaFDFP9AVOFJYxTzlNdYCMqf7NiURqbyKRLAiPoFbOS3UMKBEqwizPpY47tJqTNKIMxykTBkQYB_kJ1M2QzBYrOMZsPRqnf9y_gp3ueNCf9XvZ4xnsmlkyyfhmdA616nWpLrTGV_zSzuwnTcmmRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Steganography+Detection+using+Convolutional+Neural+Networks%3A+A+Deep+Learning+Approach&rft.au=G%2C+Saravana+Gokul&rft.au=Kumar+K%2C+Deepak&rft.au=S%2C+Senthil+Pandi&rft.au=P%2C+Kumar&rft.date=2025-05-14&rft.pub=IEEE&rft.spage=981&rft.epage=985&rft_id=info:doi/10.1109%2FICPCSN65854.2025.11035753&rft.externalDocID=11035753