Steganography Detection using Convolutional Neural Networks: A Deep Learning Approach
Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We impl...
Saved in:
Published in | 2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN) pp. 981 - 985 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.05.2025
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPCSN65854.2025.11035753 |
Cover
Abstract | Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We implement and compare the performance of LeNet-5 and AlexNet architectures in classifying images as either clean or stego. The dataset comprises images embedded using the Least Significant Bit (LSB) technique. The models are then trained with augmented image data and then evaluated using various accuracy metrics. Experimental results indicate that AlexNet, with its deeper architecture, achieves higher accuracy than LeNet-5 in identifying stego-images. The findings demonstrate the potency of deep learning in automated steganalysis, highlighting the potential for CNNs in cybersecurity applications. |
---|---|
AbstractList | Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses on developing a deep learning-based approach for the detection of steganography with the help of Convolutional Neural Networks (CNNs). We implement and compare the performance of LeNet-5 and AlexNet architectures in classifying images as either clean or stego. The dataset comprises images embedded using the Least Significant Bit (LSB) technique. The models are then trained with augmented image data and then evaluated using various accuracy metrics. Experimental results indicate that AlexNet, with its deeper architecture, achieves higher accuracy than LeNet-5 in identifying stego-images. The findings demonstrate the potency of deep learning in automated steganalysis, highlighting the potential for CNNs in cybersecurity applications. |
Author | G, Saravana Gokul S, Monika P, Kumar U, Neha M Kumar K, Deepak S, Senthil Pandi |
Author_xml | – sequence: 1 givenname: Saravana Gokul surname: G fullname: G, Saravana Gokul email: sharavana.ssg@gmail.com organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India – sequence: 2 givenname: Deepak surname: Kumar K fullname: Kumar K, Deepak email: kdeepak.srmit@gmail.com organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India – sequence: 3 givenname: Senthil Pandi surname: S fullname: S, Senthil Pandi email: mailtosenthil.ks@gmail.com organization: Easwari Engineering College,Department of CSE,Chennai,India – sequence: 4 givenname: Kumar surname: P fullname: P, Kumar email: kumar@rajalakshmi.edu.in organization: Rajalakshmi Engineering College,Department of CSE,Chennai,India – sequence: 5 givenname: Monika surname: S fullname: S, Monika email: 210701166@rajalakshmi.edu.in organization: REC,Department of CSE,Chennai,India – sequence: 6 givenname: Neha M surname: U fullname: U, Neha M email: 210701178@rajalakshmi.edu.in organization: REC,Department of CSE,Chennai,India |
BookMark | eNo1j8lOwzAYhI0EByh9Aw7mAVK8YMfmFoWtUlSQWs6VY_9NI4IdOQ6ob0_Dcvo0o5mR5gKd-uABoWtKFpQSfbMsX8v1SgolbheMMDG5XOSCn6C5zrXinAouqObn6G2doDE-NNH0-wO-hwQ2tcHjcWh9g8vgP0M3To7p8ArG-IP0FeL7cIeLYwF6XIGJfooXfR-DsftLdLYz3QDzP87Q5vFhUz5n1cvTsiyqrNU8ZcIZy4BIrqUiNdvVTlipKHNGU5vX6iiYAubyWtdSS02YdA6scpzmyhnCZ-jqd7YFgG0f2w8TD9v_s_wbYXNQgg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPCSN65854.2025.11035753 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331535193 |
EndPage | 985 |
ExternalDocumentID | 11035753 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i93t-5dac2e0639680b2fbd5c6812da91c7b8c6828e2d7b9b6969026ddec8d3178da03 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 25 06:00:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-5dac2e0639680b2fbd5c6812da91c7b8c6828e2d7b9b6969026ddec8d3178da03 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11035753 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-14 |
PublicationDateYYYYMMDD | 2025-05-14 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN) |
PublicationTitleAbbrev | ICPCSN |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9132898 |
Snippet | Steganography is a method of concealing any message or information within digital images, making it challenging to detect hidden messages. This study focuses... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 981 |
SubjectTerms | Accuracy AlexNet CNN Computer architecture Convolutional neural networks Data models Deep learning Digital images LeNet-5 Measurement Pervasive computing Social networking (online) Steganalysis Steganography Steganography Detection |
Title | Steganography Detection using Convolutional Neural Networks: A Deep Learning Approach |
URI | https://ieeexplore.ieee.org/document/11035753 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfuoN4UnHibyJ4bdeladp4G9MxBcdgG-w28uN1iNIN7Tz415tkmaIgeOoPGhKSku9L3nufAFwLzCiXzq2eJUnEOOORNCmPjDXeFTOSc48Uehzw_oQ9TLNpSFb3uTCI6IPPMHa33pdvFnrltspaVqpSa16k27Cd52KdrLUDV4Gb2brvDrujgZVUv1lCs3jz_Y-TU7xw9PZgsKlyHS_yHK9qFeuPXzTGf7dpH5rfOXpk-KU-B7CF1SFMRjXOZRUw1OQWax9pVREX3j4ntuh7-NXkC3FcDn_xgeBvN6RjC-CSBOTqnHQCb7wJ497duNuPwsEJ0ZNI6ygzUlN0tgcvEkVLZTLtMGNGirbOVWEfaIHU5EooLuzymHI7yenCWFuiMDJJj6BRLSo8BlJoZFSWpbGrDqvlmWBc0lxI7TCEeVKeQNN1yWy5RmPMNr1x-sf7M9h1I-Pc7212Do36dYUXVtVrdelH8xOPdKLz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fS8MwEMcPnaA-qTjxtxF8bdelTdr6NqZj060MtsHeRn61iNIN7XzwrzfJMkVB8Kk_4GhJSr93ubtPAG5SRTBlJq1OgsCLaEQ9JkPqSe2880gySi1SaJDR7iR6mJKpa1a3vTBKKVt8pnxzanP5ci6WZqmsoaUq1O5FuAlbRIcV8apdaxuuHTmz0WsP26NMi6pdLsHEX1v82DvFSkdnD7L1Q1cVI8_-suK--PjFY_z3W-1D_btLDw2_9OcANlR5CJNRpQpWOhA1ulOVrbUqkSlwL5A2fXcfG3tBhsxhD7YU_O0WtbSBWiAHXS1QyxHH6zDu3I_bXc9tneA9pWHlEckEVsb7oEnAcc4lEQY0JlnaFDFP9AVOFJYxTzlNdYCMqf7NiURqbyKRLAiPoFbOS3UMKBEqwizPpY47tJqTNKIMxykTBkQYB_kJ1M2QzBYrOMZsPRqnf9y_gp3ueNCf9XvZ4xnsmlkyyfhmdA616nWpLrTGV_zSzuwnTcmmRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Pervasive+Computing+and+Social+Networking+%28ICPCSN%29&rft.atitle=Steganography+Detection+using+Convolutional+Neural+Networks%3A+A+Deep+Learning+Approach&rft.au=G%2C+Saravana+Gokul&rft.au=Kumar+K%2C+Deepak&rft.au=S%2C+Senthil+Pandi&rft.au=P%2C+Kumar&rft.date=2025-05-14&rft.pub=IEEE&rft.spage=981&rft.epage=985&rft_id=info:doi/10.1109%2FICPCSN65854.2025.11035753&rft.externalDocID=11035753 |