Application of Deep Learning Algorithms for Automated MRI Knee Joint Image Segmentation

Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentatio...

Full description

Saved in:
Bibliographic Details
Published in2025 15th International Conference on Measurement pp. 6 - 9
Main Authors Pajanova, Iveta, Krafcik, Andrej
Format Conference Proceeding
LanguageEnglish
Published Institute of Measurement Science, SAS 02.06.2025
Subjects
Online AccessGet full text
DOI10.23919/MEASUREMENT66999.2025.11078684

Cover

Abstract Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentation of knee MRI images from the Osteoarthritis Initiative (OAI) dataset. Trained on 507 subjects, the model achieves minimum Dice similarity coefficients of 98.5% for femoral and tibial bone, 85.0% for femoral cartilage, and 70.8% for tibial cartilage. The average inference time per one subject was under 30 seconds, demonstrating a reduction in processing time compared to manual annotation. These results suggest that CNN-based segmentation offers a reliable and efficient alternative to manual segmentation, enhancing diagnostic workflows in osteoarthritis monitoring.
AbstractList Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentation of knee MRI images from the Osteoarthritis Initiative (OAI) dataset. Trained on 507 subjects, the model achieves minimum Dice similarity coefficients of 98.5% for femoral and tibial bone, 85.0% for femoral cartilage, and 70.8% for tibial cartilage. The average inference time per one subject was under 30 seconds, demonstrating a reduction in processing time compared to manual annotation. These results suggest that CNN-based segmentation offers a reliable and efficient alternative to manual segmentation, enhancing diagnostic workflows in osteoarthritis monitoring.
Author Krafcik, Andrej
Pajanova, Iveta
Author_xml – sequence: 1
  givenname: Iveta
  surname: Pajanova
  fullname: Pajanova, Iveta
  email: iveta.pajanova@savba.sk
  organization: Slovak University of Technology,Faculty of Electrical Engineering and Information Technology,Bratislava,Slovakia
– sequence: 2
  givenname: Andrej
  surname: Krafcik
  fullname: Krafcik, Andrej
  organization: Slovak Academy of Sciences,Institute of Measurement Science,Bratislava,Slovakia
BookMark eNo1jztPwzAYAI0EAy38AwZvTAl-xE48RiVAIAGpDWKs7PRzsJTYUWoG_j2Ix3TSDSfdCp364AGha0pSxhVVN21V7l63VVs9d1IqpVJGmEgpJXkhi-wErQoiFRWK0OwcvZXzPLpeRxc8DhbfAsy4Ab145wdcjkNYXHyfjtiGBZcfMUw6wgG32xo_eQD8GJyPuJ70AHgHwwQ-_rQu0JnV4xEu_7hG3V3VbR6S5uW-3pRN4hSPiSiEFbmyoGwPzHBjBbcWtATac0szIw-a98xyArTIMwFMU2NyK3tt2Lfga3T1m3UAsJ8XN-nlc___yr8A7VBSfQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/MEASUREMENT66999.2025.11078684
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore (NTUSG)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 8069159014
9788069159013
EndPage 9
ExternalDocumentID 11078684
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-585f579fe9fce2b3bf53ffea6e1c3f14b6da3c2f30e18745e2a1bb7f6cab28743
IEDL.DBID RIE
IngestDate Wed Jul 23 05:50:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-585f579fe9fce2b3bf53ffea6e1c3f14b6da3c2f30e18745e2a1bb7f6cab28743
PageCount 4
ParticipantIDs ieee_primary_11078684
PublicationCentury 2000
PublicationDate 2025-June-2
PublicationDateYYYYMMDD 2025-06-02
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-2
  day: 02
PublicationDecade 2020
PublicationTitle 2025 15th International Conference on Measurement
PublicationTitleAbbrev MEASUREMENT
PublicationYear 2025
Publisher Institute of Measurement Science, SAS
Publisher_xml – name: Institute of Measurement Science, SAS
Score 1.9137068
Snippet Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan...
SourceID ieee
SourceType Publisher
StartPage 6
SubjectTerms Artificial Neural Network
Automated MRI Image Segmentation
Convolutional Neural Network
Convolutional neural networks
Deep learning
Image segmentation
Inference algorithms
Knee Joint
Magnetic resonance imaging
Manuals
Monitoring
Osteoarthritis
Reliability
Three-dimensional displays
Title Application of Deep Learning Algorithms for Automated MRI Knee Joint Image Segmentation
URI https://ieeexplore.ieee.org/document/11078684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22B_GkYsVvchA87babr3aPRVtspUVqxd7KJpnUot0tdffirzdJtxYFwVNCICQkJDMvmfcGoWujE82Bi4AxpgIGrBVIqcGeKyINpVwY_6A_GIr7Z9af8ElJVvdcGADwwWcQuqr_y9eZKtxTWd1hlZZosQqq2HJN1tpFNz6cOY7i-qBj76KRV8EXwno-Fv4RHm56_cif4s1Hdx8NNwOvo0bewiKXofr8pcn475kdoNqWqYcfv23QIdqB9Ai9tLe_0jgz-A5giUsh1Rluv8-y1Tx_XXxg67DidpFn1msFjQejHn5IAXA_m6c57i3sVYOfYLYo6UlpDY27nfHtfVAmUAjmMc0DiwQMb8YGYqOASCoNp8ZAIiBS1ERMCp1QRQxtgMvMx4EkkZRNI1QinQw-PUbVNEvhBOEGkco6h5JoafFcpC0sVAlvJk1wdCijT1HNLcp0uZbImG7W4-yP9nO05_bGx1yRC1TNVwVcWuueyyu_q19WvqcH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdPAg-dVubS9fHoRu7dcicuLfRJCdz6Nox2xd_vWnWORQE30IgFxKSc77kfN9B6FarSDFg3KGUSocCrTtCKDDnyhOaEMa1fdAPB7z9TLtjNi7I6pYLAwA2-AwqedH-5atEZvlTWTXHKnVep9toh5m-2YqutYvubEBz4AbVsGluo6HVwefc-D4GAHqssm73I4OKNSCtAzRYD72KG3mrZKmoyM9fqoz_ntshKm-4evjx2wodoS2Ij9FLY_MvjRONHwAWuJBSneLG-zRZztLX-Qc2LituZGli_FZQOBx2cC8GwN1kFqe4MzeXDX6C6bwgKMVlNGo1R_dtp0ih4MwCkjoGC2jmBxoCLcETRGhGtIaIgyuJdqngKiLS06QGeW4-Bl7kCuFrLiORC-GTE1SKkxhOEa55Qhr3UHhKGETnKgMMZcT8yIecEKXVGSrnizJZrEQyJuv1OP-j_gbttUdhf9LvDHoXaD_fJxuB5V2iUrrM4MrY-lRc2x3-AkQEqlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+15th+International+Conference+on+Measurement&rft.atitle=Application+of+Deep+Learning+Algorithms+for+Automated+MRI+Knee+Joint+Image+Segmentation&rft.au=Pajanova%2C+Iveta&rft.au=Krafcik%2C+Andrej&rft.date=2025-06-02&rft.pub=Institute+of+Measurement+Science%2C+SAS&rft.spage=6&rft.epage=9&rft_id=info:doi/10.23919%2FMEASUREMENT66999.2025.11078684&rft.externalDocID=11078684