Application of Deep Learning Algorithms for Automated MRI Knee Joint Image Segmentation
Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentatio...
Saved in:
| Published in | 2025 15th International Conference on Measurement pp. 6 - 9 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
Institute of Measurement Science, SAS
02.06.2025
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.23919/MEASUREMENT66999.2025.11078684 |
Cover
| Abstract | Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentation of knee MRI images from the Osteoarthritis Initiative (OAI) dataset. Trained on 507 subjects, the model achieves minimum Dice similarity coefficients of 98.5% for femoral and tibial bone, 85.0% for femoral cartilage, and 70.8% for tibial cartilage. The average inference time per one subject was under 30 seconds, demonstrating a reduction in processing time compared to manual annotation. These results suggest that CNN-based segmentation offers a reliable and efficient alternative to manual segmentation, enhancing diagnostic workflows in osteoarthritis monitoring. |
|---|---|
| AbstractList | Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan for detailed segmentations. This paper presents a deep learning approach utilizing a modified 3D U-Net architecture for automated segmentation of knee MRI images from the Osteoarthritis Initiative (OAI) dataset. Trained on 507 subjects, the model achieves minimum Dice similarity coefficients of 98.5% for femoral and tibial bone, 85.0% for femoral cartilage, and 70.8% for tibial cartilage. The average inference time per one subject was under 30 seconds, demonstrating a reduction in processing time compared to manual annotation. These results suggest that CNN-based segmentation offers a reliable and efficient alternative to manual segmentation, enhancing diagnostic workflows in osteoarthritis monitoring. |
| Author | Krafcik, Andrej Pajanova, Iveta |
| Author_xml | – sequence: 1 givenname: Iveta surname: Pajanova fullname: Pajanova, Iveta email: iveta.pajanova@savba.sk organization: Slovak University of Technology,Faculty of Electrical Engineering and Information Technology,Bratislava,Slovakia – sequence: 2 givenname: Andrej surname: Krafcik fullname: Krafcik, Andrej organization: Slovak Academy of Sciences,Institute of Measurement Science,Bratislava,Slovakia |
| BookMark | eNo1jztPwzAYAI0EAy38AwZvTAl-xE48RiVAIAGpDWKs7PRzsJTYUWoG_j2Ix3TSDSfdCp364AGha0pSxhVVN21V7l63VVs9d1IqpVJGmEgpJXkhi-wErQoiFRWK0OwcvZXzPLpeRxc8DhbfAsy4Ab145wdcjkNYXHyfjtiGBZcfMUw6wgG32xo_eQD8GJyPuJ70AHgHwwQ-_rQu0JnV4xEu_7hG3V3VbR6S5uW-3pRN4hSPiSiEFbmyoGwPzHBjBbcWtATac0szIw-a98xyArTIMwFMU2NyK3tt2Lfga3T1m3UAsJ8XN-nlc___yr8A7VBSfQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/MEASUREMENT66999.2025.11078684 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore (NTUSG) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 8069159014 9788069159013 |
| EndPage | 9 |
| ExternalDocumentID | 11078684 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-585f579fe9fce2b3bf53ffea6e1c3f14b6da3c2f30e18745e2a1bb7f6cab28743 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 23 05:50:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-585f579fe9fce2b3bf53ffea6e1c3f14b6da3c2f30e18745e2a1bb7f6cab28743 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_11078684 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-2 |
| PublicationDateYYYYMMDD | 2025-06-02 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 15th International Conference on Measurement |
| PublicationTitleAbbrev | MEASUREMENT |
| PublicationYear | 2025 |
| Publisher | Institute of Measurement Science, SAS |
| Publisher_xml | – name: Institute of Measurement Science, SAS |
| Score | 1.9137068 |
| Snippet | Manual segmentation of knee joint structures in 3D Magnetic Resonance Imaging (MRI) scans is a labor-intensive process, often requiring several hours per scan... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 6 |
| SubjectTerms | Artificial Neural Network Automated MRI Image Segmentation Convolutional Neural Network Convolutional neural networks Deep learning Image segmentation Inference algorithms Knee Joint Magnetic resonance imaging Manuals Monitoring Osteoarthritis Reliability Three-dimensional displays |
| Title | Application of Deep Learning Algorithms for Automated MRI Knee Joint Image Segmentation |
| URI | https://ieeexplore.ieee.org/document/11078684 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22B_GkYsVvchA87babr3aPRVtspUVqxd7KJpnUot0tdffirzdJtxYFwVNCICQkJDMvmfcGoWujE82Bi4AxpgIGrBVIqcGeKyINpVwY_6A_GIr7Z9af8ElJVvdcGADwwWcQuqr_y9eZKtxTWd1hlZZosQqq2HJN1tpFNz6cOY7i-qBj76KRV8EXwno-Fv4RHm56_cif4s1Hdx8NNwOvo0bewiKXofr8pcn475kdoNqWqYcfv23QIdqB9Ai9tLe_0jgz-A5giUsh1Rluv8-y1Tx_XXxg67DidpFn1msFjQejHn5IAXA_m6c57i3sVYOfYLYo6UlpDY27nfHtfVAmUAjmMc0DiwQMb8YGYqOASCoNp8ZAIiBS1ERMCp1QRQxtgMvMx4EkkZRNI1QinQw-PUbVNEvhBOEGkco6h5JoafFcpC0sVAlvJk1wdCijT1HNLcp0uZbImG7W4-yP9nO05_bGx1yRC1TNVwVcWuueyyu_q19WvqcH |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdPAg-dVubS9fHoRu7dcicuLfRJCdz6Nox2xd_vWnWORQE30IgFxKSc77kfN9B6FarSDFg3KGUSocCrTtCKDDnyhOaEMa1fdAPB7z9TLtjNi7I6pYLAwA2-AwqedH-5atEZvlTWTXHKnVep9toh5m-2YqutYvubEBz4AbVsGluo6HVwefc-D4GAHqssm73I4OKNSCtAzRYD72KG3mrZKmoyM9fqoz_ntshKm-4evjx2wodoS2Ij9FLY_MvjRONHwAWuJBSneLG-zRZztLX-Qc2LituZGli_FZQOBx2cC8GwN1kFqe4MzeXDX6C6bwgKMVlNGo1R_dtp0ih4MwCkjoGC2jmBxoCLcETRGhGtIaIgyuJdqngKiLS06QGeW4-Bl7kCuFrLiORC-GTE1SKkxhOEa55Qhr3UHhKGETnKgMMZcT8yIecEKXVGSrnizJZrEQyJuv1OP-j_gbttUdhf9LvDHoXaD_fJxuB5V2iUrrM4MrY-lRc2x3-AkQEqlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+15th+International+Conference+on+Measurement&rft.atitle=Application+of+Deep+Learning+Algorithms+for+Automated+MRI+Knee+Joint+Image+Segmentation&rft.au=Pajanova%2C+Iveta&rft.au=Krafcik%2C+Andrej&rft.date=2025-06-02&rft.pub=Institute+of+Measurement+Science%2C+SAS&rft.spage=6&rft.epage=9&rft_id=info:doi/10.23919%2FMEASUREMENT66999.2025.11078684&rft.externalDocID=11078684 |