Infertility Prediction using Long Short-Term Memory Algorithm with PCOS Electronic Healthcare Data

Among women of Menstrual age, Polycystic Ovarian Syndrome (PCOS) ranks highest among Infertility disorders. The dissimilar diagnostic conditions for PCOS make it a diverse illness. When other potential causes of infertility have been eliminated, the diagnosis can make on presence of two or three car...

Full description

Saved in:
Bibliographic Details
Published in2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 pp. 1 - 7
Main Authors Sarath, T., Brindha, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.04.2025
Subjects
Online AccessGet full text
DOI10.1109/OTCON65728.2025.11071074

Cover

Abstract Among women of Menstrual age, Polycystic Ovarian Syndrome (PCOS) ranks highest among Infertility disorders. The dissimilar diagnostic conditions for PCOS make it a diverse illness. When other potential causes of infertility have been eliminated, the diagnosis can make on presence of two or three cardinal features: hyperandrogenism, polycystic ovary morphology, and irregular menstrual cycles. Consequently, women's infertility might not provide enough evidence for PCOS diagnosis on a large scale. Obesity increases is one of the cause that risks metabolic diseases like metabolic syndrome, type 2 diabetes, decreased glucose tolerance and hyperandrogenism among other characteristics. In this way, PCOS patients could be more precisely identified using the data and text included in Electronic Health Records (EHR). So, the goal of this paper is to analyze the infertility in women based on PCOS patient record data with Long Short-Term Memory (LSTM) model to increase the monitoring, patient care, diagnosis and treatment outcomes.
AbstractList Among women of Menstrual age, Polycystic Ovarian Syndrome (PCOS) ranks highest among Infertility disorders. The dissimilar diagnostic conditions for PCOS make it a diverse illness. When other potential causes of infertility have been eliminated, the diagnosis can make on presence of two or three cardinal features: hyperandrogenism, polycystic ovary morphology, and irregular menstrual cycles. Consequently, women's infertility might not provide enough evidence for PCOS diagnosis on a large scale. Obesity increases is one of the cause that risks metabolic diseases like metabolic syndrome, type 2 diabetes, decreased glucose tolerance and hyperandrogenism among other characteristics. In this way, PCOS patients could be more precisely identified using the data and text included in Electronic Health Records (EHR). So, the goal of this paper is to analyze the infertility in women based on PCOS patient record data with Long Short-Term Memory (LSTM) model to increase the monitoring, patient care, diagnosis and treatment outcomes.
Author Brindha, K.
Sarath, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Sarath
  fullname: Sarath, T.
  email: sarath.t2022@vitstudent.ac.in
  organization: Vellore Institute of Technology,School of Computer Science Engineering and Information Systems,Vellore
– sequence: 2
  givenname: K.
  surname: Brindha
  fullname: Brindha, K.
  email: brindha.k@vit.ac.in
  organization: Vellore Institute of Technology,School of Computer Science Engineering and Information Systems,Vellore
BookMark eNo1j81KAzEUhSPoQmvfwEVeYGqSm5_JsozVFqpT6OxLmrnTBmYmkkakb2_FCofvwLc4cB7I7RhHJIRyNuOc2ee6qeoPrYwoZ4IJ9SvNJfKGTK2xJQBXoECze7JfjR2mHPqQz3STsA0-hzjSr1MYD3QdL9geY8pFg2mg7zjEdKbz_hBTyMeBfl9IN1W9pYsefU5xDJ4u0fX56F1C-uKyeyR3netPOL32hDSvi6ZaFuv6bVXN10WwkAulhZItlM4yx7SRtmOs5HstDROiY3sjSzCuReReCZCt4Rq0560AsF45CRPy9DcbEHH3mcLg0nn3_xx-ACvDUvI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/OTCON65728.2025.11071074
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331535360
EndPage 7
ExternalDocumentID 11071074
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-56254d38a90a06749f0081b647022f0b74837adee1c5234d71636c1d2339c5a43
IEDL.DBID RIE
IngestDate Wed Aug 20 06:20:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-56254d38a90a06749f0081b647022f0b74837adee1c5234d71636c1d2339c5a43
PageCount 7
ParticipantIDs ieee_primary_11071074
PublicationCentury 2000
PublicationDate 2025-April-9
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-9
  day: 09
PublicationDecade 2020
PublicationTitle 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0
PublicationTitleAbbrev OTCON
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.907913
Snippet Among women of Menstrual age, Polycystic Ovarian Syndrome (PCOS) ranks highest among Infertility disorders. The dissimilar diagnostic conditions for PCOS make...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Data models
Electronic Health Record
Electronic medical records
Infertility
Long Short-Term Memory
Monitoring
Obesity
Patient Care
Polycystic Ovarian Syndrome
Prediction algorithms
Predictive models
Technological innovation
Title Infertility Prediction using Long Short-Term Memory Algorithm with PCOS Electronic Healthcare Data
URI https://ieeexplore.ieee.org/document/11071074
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bdU2aNkeZG1PcD1iF3UaSpttQVxnZYf71vtetEwXBSylNS8ML5Hvfy_feI-TOMgV-MbATwxXzeJ7kntRagiMnAP8CEyYK45D9gei98KdJNNklq5e5MNbaUnxmfbwtz_KzwqwxVNZEroICwhqpxYnYJmtV6pxANodpezgQURyiZCuM_Or1H41TStzoHpFB9cetXOTVXzvtm89fxRj_PaVj0vhO0aOjPfickAO7PCX6Ecccyl03MIpnMGh3iuL2GX0u4DKeg7_tpbAf0z6KbDf0_m1WrBZu_k4xJktH7eGYdvbNcWhvLxCjD8qpBkm7nbTd83ZNFLyFZM5DfsMzligZKAAmLnN0ArTgMYB3HugYK8qrzNqWAUrKM6BPTJhWFjImTaQ4OyP1ZbG054TCB5GRYF-dh1yEMoG9QTErAfW1BcfigjTQPtOPbZmMaWWayz-eX5FDXKZSBiOvSd2t1vYGEN7p23JlvwC4DKUo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1Y6zdWI8GIUNhkDATbqTtOiAoM2Qc8K_3vcEwmph4WZo1zZbXpN_3Xr_3HiEPhkngxeCdaC6ZxdMgtYRSAoicD_jnaDeQGIfsRX74yp9H3mibrF7kwhhjCvGZsXFY3OUnmV5hqKyGvgoKCPfJgcc59zbpWqU-xxG1ftzsR77XcFG05Xp2ueBH65QCOdrHJCq_uRGMzO1Vrmz9-asc479_6oRUv5P06GAHP6dkzyzOiOrgXI6C1zXM4i0MWp6ivH1Cuxk8hlNg3FYMJzLtocx2TR_fJtlylk_fKUZl6aDZH9LWrj0ODXcSMfokc1klcbsVN0Nr20bBmgmWW-jh8IQFUjgSoImLFGmA8nkD4Dt1VANrysvEmLoGp5Qn4EAxX9cTlzGhPcnZOakssoW5IBQWeFqAfVXqct8VAZwOkhkBuK8MUItLUkX7jD82hTLGpWmu_nh_Tw7DuNcddzvRyzU5wi0rRDHihlTy5crcAt7n6q7Y5S-OtKh1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+4th+OPJU+International+Technology+Conference+%28OTCON%29+on+Smart+Computing+for+Innovation+and+Advancement+in+Industry+5.0&rft.atitle=Infertility+Prediction+using+Long+Short-Term+Memory+Algorithm+with+PCOS+Electronic+Healthcare+Data&rft.au=Sarath%2C+T.&rft.au=Brindha%2C+K.&rft.date=2025-04-09&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FOTCON65728.2025.11071074&rft.externalDocID=11071074