SKSP: Selected Kernel Spatial Pattern Analysis in Euclidean and Hilbert Space for Decoding Motor Imagery

Brain-computer Interface (BCI) has promising prospects as the most active research direction in the fields of brain science and artificial intelligence. The Common Spatial Pattern (CSP) algorithm has attracted extensive attention and has been demonstrated to be effective for Motor Imagery (MI) tasks...

Full description

Saved in:
Bibliographic Details
Published inSmart World Congress (SWC), IEEE pp. 1249 - 1256
Main Authors Zhibin, Zhang, Niu, Jianwei, Ren, Lu, Ouyang, Zhenchao, Mo, Shasha
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.12.2024
Subjects
Online AccessGet full text
ISSN2993-396X
DOI10.1109/SWC62898.2024.00196

Cover

Abstract Brain-computer Interface (BCI) has promising prospects as the most active research direction in the fields of brain science and artificial intelligence. The Common Spatial Pattern (CSP) algorithm has attracted extensive attention and has been demonstrated to be effective for Motor Imagery (MI) tasks. However, CSP is limited to capturing complex nonlinear characteristics under its linear assumption. Many variants of CSP cannot deal with multiple relationships simultaneously. This paper proposes a Selected Kernel Spatial Pattern (SKSP) algorithm for human behavior recognition. Electroencephalogram (EEG) signals are projected onto a high-dimensional Reproducing Kernel Hilbert Space (RKHS) by the selected kernel function, where the nonlinear relationship is transformed into a linear one. This approach exploits wavelet transform and CSP patterns to compute the energy spectrum and differential entropy of data in RKHS to represent EEG patterns of brain activities. In addition, a multi-view module was proposed to strengthen pattern representations, which employs mutual information maximization to select the optimal sliding window in both frequency and time domains. The experiments are conducted on the BCI Competition IV-2a dataset. The four classes' classification accuracy reaches 92% in subject seven. The proposed method outperforms the best state-of-the-art classification method by 4% in average subject accuracy.
AbstractList Brain-computer Interface (BCI) has promising prospects as the most active research direction in the fields of brain science and artificial intelligence. The Common Spatial Pattern (CSP) algorithm has attracted extensive attention and has been demonstrated to be effective for Motor Imagery (MI) tasks. However, CSP is limited to capturing complex nonlinear characteristics under its linear assumption. Many variants of CSP cannot deal with multiple relationships simultaneously. This paper proposes a Selected Kernel Spatial Pattern (SKSP) algorithm for human behavior recognition. Electroencephalogram (EEG) signals are projected onto a high-dimensional Reproducing Kernel Hilbert Space (RKHS) by the selected kernel function, where the nonlinear relationship is transformed into a linear one. This approach exploits wavelet transform and CSP patterns to compute the energy spectrum and differential entropy of data in RKHS to represent EEG patterns of brain activities. In addition, a multi-view module was proposed to strengthen pattern representations, which employs mutual information maximization to select the optimal sliding window in both frequency and time domains. The experiments are conducted on the BCI Competition IV-2a dataset. The four classes' classification accuracy reaches 92% in subject seven. The proposed method outperforms the best state-of-the-art classification method by 4% in average subject accuracy.
Author Mo, Shasha
Niu, Jianwei
Ren, Lu
Ouyang, Zhenchao
Zhibin, Zhang
Author_xml – sequence: 1
  givenname: Zhang
  surname: Zhibin
  fullname: Zhibin, Zhang
  email: zhangzhibin@buaa.edu.cn
  organization: Beihang University,School of Computer Science and Engineering,Beijing,China
– sequence: 2
  givenname: Jianwei
  surname: Niu
  fullname: Niu, Jianwei
  email: niujianwei@buaa.edu.cn
  organization: Beihang University,School of Computer Science and Engineering,Beijing,China
– sequence: 3
  givenname: Lu
  surname: Ren
  fullname: Ren, Lu
  email: by1706108@buaa.edu.cn
  organization: Beihang University,School of Computer Science and Engineering,Beijing,China
– sequence: 4
  givenname: Zhenchao
  surname: Ouyang
  fullname: Ouyang, Zhenchao
  email: ouyangkid@buaa.edu.cn
  organization: Zhongfa Aviation Institute Beihang University,Hangzhou,China
– sequence: 5
  givenname: Shasha
  surname: Mo
  fullname: Mo, Shasha
  email: moshasha@buaa.edu.cn
  organization: Beihang University,School of Cyber Science and Technology,Beijing,China
BookMark eNotkM1OAjEUhavRRESeQBd9gcHbn-m07giiEDCSDInuSKdzizVDh8yUBW8vRlcn50vOtzi35Cq2EQm5ZzBmDMxj-TFVXBs95sDlGIAZdUFGpjBaCJZz0IpdkgE3RmTCqM8bMur7bwAQgjOm5YB8lcty_URLbNAlrOkSu4gNLQ82BdvQtU3pTOgk2ubUh56GSGdH14QabaQ21nQemgq79LtwSH3b0Wd0bR3ijr616VwXe7vD7nRHrr1tehz955BsXmab6Txbvb8uppNVFoxImXTCK-UKBWCcqjxIW-gctTfeS89A5N4qVitlKoEgtKuYLAQUMpcKnNZiSB7-tAERt4cu7G132p6v4jkUSvwA8pxZGA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SWC62898.2024.00196
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331520861
EISSN 2993-396X
EndPage 1256
ExternalDocumentID 10925076
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-4c3f66c76009c6bf04a785e8f9ff4f1035fa61d669b3e038cb14730745460c883
IEDL.DBID RIE
IngestDate Wed Aug 27 01:42:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-4c3f66c76009c6bf04a785e8f9ff4f1035fa61d669b3e038cb14730745460c883
PageCount 8
ParticipantIDs ieee_primary_10925076
PublicationCentury 2000
PublicationDate 2024-Dec.-2
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-2
  day: 02
PublicationDecade 2020
PublicationTitle Smart World Congress (SWC), IEEE
PublicationTitleAbbrev SWC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003321184
Score 1.8942754
Snippet Brain-computer Interface (BCI) has promising prospects as the most active research direction in the fields of brain science and artificial intelligence. The...
SourceID ieee
SourceType Publisher
StartPage 1249
SubjectTerms Accuracy
Common Spatial Pattern
Electroencephalography
Hilbert space
Kernel
Motor Imagery
Motors
Nonlinear
Pattern analysis
Pattern recognition
Time-domain analysis
Time-frequency analysis
Wavelet transforms
Title SKSP: Selected Kernel Spatial Pattern Analysis in Euclidean and Hilbert Space for Decoding Motor Imagery
URI https://ieeexplore.ieee.org/document/10925076
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJ0_zY-I3OXjtTJs0Tb3OjenYGHTibqNJX7A4OxntQf96k6zdQBC8ldDyQj763kve7_dD6C6EAAIJ3JMqJh5jWeqlYZB5OpB-oMNI8djinSdTPnphz4twUYPVHRYGAFzxGfTso7vLz9aqskdlZofHxmNHvIVakeBbsNbuQIVSk8sIVjMLmVfvk9c-N_mELeAKLEe275j59xoqzoUMO2jaGN9Wjrz3qlL21PcvXsZ_9-4IdfdoPTzb-aFjdADFCeo0cg243r2n6C0ZJ7MHnDjlG8jwGDYFrLAVJTaLEM8c02aBG5oSnBd4UKlVnkFa4LTI8Ci3hFil_cKYNNEufjTJqzWKJ2uTu-OnD8uI8dVF8-Fg3h95tdCCl8e09JiimnNlr-hixaUmLI1ECELHWjPtExrqlPsZ57GkQKhQ0mfmxxCxkHGihKBnqF2sCzhHOCISGJGR9k2g5XMhhdQiUCTlStFQkQvUtQO3_NxSaSybMbv8o_0KHdrJc_UjwTVql5sKbkwUUMpbN_s_JsWxWw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHOBUliJ2fOCa4sRLHK6lVUsXVWoRvVWxMxYRJUVVeoCvx3YXJCQkbpGVaCwvmRl73nsI3XGIIFIgAqUTEjCWpUHKoywwkQojw2MtEod37g9E-5k9TfhkDVb3WBgA8MVnUHeP_i4_m-ulOyqzOzyxHjsWu2iPM8b4Cq61PVKh1GYzkq25hezL96OXhrAZhSvhihxLdui5-X9UVLwTaVXRYGN-VTvyVl-Wqq6_fjEz_rt_h6j2g9fDw60nOkI7UByj6kawAa_37wl6HXVHwwc88to3kOEuLAqYYSdLbJchHnquzQJviEpwXuDmUs_yDNICp0WG27mjxCrdF9akjXfxo01fnVHcn9vsHXfeHSfGZw2NW81xox2spRaCPKFlwDQ1Qmh3SZdooQxhaSw5SJMYw0xIKDepCDMhEkWBUKlVyOyvIWacCaKlpKeoUswLOEM4JgoYUbEJbagVCqmkMjLSJBVaU67JOaq5gZt-rMg0ppsxu_ij_Rbtt8f93rTXGXQv0YGbSF9NEl2hSrlYwrWNCUp141fCN5_ttKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Smart+World+Congress+%28SWC%29%2C+IEEE&rft.atitle=SKSP%3A+Selected+Kernel+Spatial+Pattern+Analysis+in+Euclidean+and+Hilbert+Space+for+Decoding+Motor+Imagery&rft.au=Zhibin%2C+Zhang&rft.au=Niu%2C+Jianwei&rft.au=Ren%2C+Lu&rft.au=Ouyang%2C+Zhenchao&rft.date=2024-12-02&rft.pub=IEEE&rft.eissn=2993-396X&rft.spage=1249&rft.epage=1256&rft_id=info:doi/10.1109%2FSWC62898.2024.00196&rft.externalDocID=10925076