Dynamic Waste Management Optimization Using LSTM-Based Predictive Analytics and Robotic Sorting Technologies

Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategical...

Full description

Saved in:
Bibliographic Details
Published inCommunications and Signal Processing, International Conference on pp. 1224 - 1229
Main Authors Annamalai, Perumal, K, Saravanan, K.R, Jansi, A, Latha, M, Muthulekshmi, G, Padma Malini
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.06.2025
Subjects
Online AccessGet full text
ISSN2836-1873
DOI10.1109/ICCSP64183.2025.11089126

Cover

Abstract Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategically placing Internet of Things (IoT) sensors across waste pickup sites. These sensors track waste generation patterns throughout time. With information, LSTM-based prediction algorithms can reliably predict when garbage cans are full. LSTM models are trained in past data to grasp complicated waste generation and accumulation processes. The framework integrates robotic sorting technologies into the waste management ecosystem to further enhance recycling efficiency. Robots equipped with sophisticated sensors, cameras, and ML algorithms can now sort recyclable waste autonomously. The proposed system is environmentally adaptive. LSTM models are retrained to provide accurate predictions using real-time IoT sensor data. The framework employs predictive analytics, robotic sorting, and IoT sensors for numerous benefits. Better waste collection routes and schedules, greater recycling rates, fewer operating costs, and less environmental effects.
AbstractList Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategically placing Internet of Things (IoT) sensors across waste pickup sites. These sensors track waste generation patterns throughout time. With information, LSTM-based prediction algorithms can reliably predict when garbage cans are full. LSTM models are trained in past data to grasp complicated waste generation and accumulation processes. The framework integrates robotic sorting technologies into the waste management ecosystem to further enhance recycling efficiency. Robots equipped with sophisticated sensors, cameras, and ML algorithms can now sort recyclable waste autonomously. The proposed system is environmentally adaptive. LSTM models are retrained to provide accurate predictions using real-time IoT sensor data. The framework employs predictive analytics, robotic sorting, and IoT sensors for numerous benefits. Better waste collection routes and schedules, greater recycling rates, fewer operating costs, and less environmental effects.
Author G, Padma Malini
Annamalai, Perumal
K.R, Jansi
A, Latha
K, Saravanan
M, Muthulekshmi
Author_xml – sequence: 1
  givenname: Perumal
  surname: Annamalai
  fullname: Annamalai, Perumal
  email: aplfeature@gmail.com
  organization: Mphasis Corporation,Houston,Texas,USA
– sequence: 2
  givenname: Saravanan
  surname: K
  fullname: K, Saravanan
  email: saranbeat@gmail.com
  organization: Dhanlakshmi Srinivasan University,School of Engineering and Technology,Department of Computer Science and Engineering,Chennai,Tamil Nadu,India
– sequence: 3
  givenname: Jansi
  surname: K.R
  fullname: K.R, Jansi
  email: jansik@srmist.edu.in
  organization: SRM Institute of Science and Technology,Department of Computing Technologies,Chennai,Tamil Nadu,India
– sequence: 4
  givenname: Latha
  surname: A
  fullname: A, Latha
  email: lathaganesan.a@gmail.com
  organization: Velammal College of Engineering and Technology,Department of Civil Engineering,Madurai,Tamil Nadu,India
– sequence: 5
  givenname: Muthulekshmi
  surname: M
  fullname: M, Muthulekshmi
  email: muthulekshmisrinivasan@gmail.com
  organization: Saveetha University,Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,Department of Biomedical Engineering,Chennai,Tamil Nadu,India
– sequence: 6
  givenname: Padma Malini
  surname: G
  fullname: G, Padma Malini
  email: pm2003dance@gmail.com
  organization: St. Joseph's College of Engineering,Department of Management Studies,Chennai,Tamil Nadu,India
BookMark eNo1kMtKw0AYhUdRsNa-gYt5gdS5ZG7LGq0WWlpsxGWZTP7UkWRSMoNQn16LujqcD863ONfoIvQBEMKUTCkl5m5RFNuNzKnmU0aYOEFtKJNnaGKUplKKXCgu6TkaMc1lRrXiV2gS4wchhFOlJSUj1D4cg-28w282JsArG-weOggJrw_Jd_7LJt8H_Bp92OPltlxl9zZCjTcD1N4l_wl4Fmx7TN5FbEONX_qq_yl42w_ptCnBvYe-7fce4g26bGwbYfKXY1TOH8viOVuunxbFbJl5w1OWG1tRpoVmqjLKNrqqawem0pQ5K4FKbivBGpk3IEmlGlM76oSQuSJOcMP4GN3-aj0A7A6D7-xw3P3_w78BEOldww
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSP64183.2025.11089126
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665457361
1665457368
EISSN 2836-1873
EndPage 1229
ExternalDocumentID 11089126
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-49ab1285827b97af8bddce9b812ca6e163ab52f64fe60b7f9dc1c556470c53923
IEDL.DBID RIE
IngestDate Wed Aug 06 17:55:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-49ab1285827b97af8bddce9b812ca6e163ab52f64fe60b7f9dc1c556470c53923
PageCount 6
ParticipantIDs ieee_primary_11089126
PublicationCentury 2000
PublicationDate 2025-June-5
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-5
  day: 05
PublicationDecade 2020
PublicationTitle Communications and Signal Processing, International Conference on
PublicationTitleAbbrev ICCSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003178610
Score 1.9139583
Snippet Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term...
SourceID ieee
SourceType Publisher
StartPage 1224
SubjectTerms Biological system modeling
Data Analysis
Data models
Garbage Management
Internet of Things
Long short term memory
Long Short-term Memory Model
Predictive analytics
Predictive models
Real-time systems
Robotic Sorting
Sensors
Sorting
Waste management
Title Dynamic Waste Management Optimization Using LSTM-Based Predictive Analytics and Robotic Sorting Technologies
URI https://ieeexplore.ieee.org/document/11089126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPhmD16TJuk-slerpYqtxVbsrexTRE1E0ou_3tlN06IgeEqykLDMhP1mZ7_5BqELzYniTNDIOcUjQpSOcq841LM9LZg1idA-3zEas-EjuZ3T-apYPdTCWGsD-czG_jac5ZtSL32qrOsp6yLNWAu1eM7qYq11QgWAMIdYoGHrJKJ70-9PJ4zATwv7wIzGzes_GqkEHBnsoHEzg5o-8hovKxXrr1_ijP-e4i7qbEr28GQNRntoyxb76O2q7jePnyQ4E2-oLvgeVor3VQkmDrQBfDedjaJLADUDH_LHN34hxEG0xEs5Y1kY_FCqEh7wtPTiA894nZiH_XYHzQbXs_4wWrVXiF5Er4qIkArAieYZV4JLlytjtBUKEF9LZiFOk4pmjhFnWaK4E0anmlJGeKIpRFW9A9QuysIeIsw5FZnJmCVUgrmd0CJVcE11Jhzj8gh1vKUWH7WAxqIx0vEf4ydo2zssMLLoKWpXn0t7BthfqfPg82_q7684
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHOAEiCJ2fOCaNIuX-EqhKtCWigbRWxVvCAEJQumFr2ecNK1AQuKU5WBZM5bfePzmDUIXihPJmaCetZJ7hEjlJU5xKDaxEszoQCiX7xiOWP-R3E7pdFGsXtXCGGMq8pnx3Wt1l68LNXepso6jrIswYutogxJCaF2utUypABQmEA00fJ1AdG663cmYEVi2cBKMqN8M8KOVSoUkvW00auZQE0he_XkpffX1S57x35PcQe1V0R4eL-FoF62ZfA-9XdUd5_FTBu7EK7ILvoe94n1RhIkr4gAeTNKhdwmwpmEgd4HjtkJcyZY4MWec5Ro_FLKADzwpnPzAM16m5uHE3UZp7zrt9r1FgwXvRcSlR0QmAZ5oEnEpeGYTqbUyQgLmq4wZiNQySSPLiDUskNwKrUJFKSM8UBTiqngftfIiNwcIc05FpCNmCM3A3FYoEUp4hioSlvHsELWdpWYftYTGrDHS0R__z9FmPx0OZoOb0d0x2nLOq_hZ9AS1ys-5OYVIoJRnlf-_AUV4soU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Communications+and+Signal+Processing%2C+International+Conference+on&rft.atitle=Dynamic+Waste+Management+Optimization+Using+LSTM-Based+Predictive+Analytics+and+Robotic+Sorting+Technologies&rft.au=Annamalai%2C+Perumal&rft.au=K%2C+Saravanan&rft.au=K.R%2C+Jansi&rft.au=A%2C+Latha&rft.date=2025-06-05&rft.pub=IEEE&rft.eissn=2836-1873&rft.spage=1224&rft.epage=1229&rft_id=info:doi/10.1109%2FICCSP64183.2025.11089126&rft.externalDocID=11089126