Dynamic Waste Management Optimization Using LSTM-Based Predictive Analytics and Robotic Sorting Technologies
Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategical...
Saved in:
| Published in | Communications and Signal Processing, International Conference on pp. 1224 - 1229 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
05.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2836-1873 |
| DOI | 10.1109/ICCSP64183.2025.11089126 |
Cover
| Abstract | Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategically placing Internet of Things (IoT) sensors across waste pickup sites. These sensors track waste generation patterns throughout time. With information, LSTM-based prediction algorithms can reliably predict when garbage cans are full. LSTM models are trained in past data to grasp complicated waste generation and accumulation processes. The framework integrates robotic sorting technologies into the waste management ecosystem to further enhance recycling efficiency. Robots equipped with sophisticated sensors, cameras, and ML algorithms can now sort recyclable waste autonomously. The proposed system is environmentally adaptive. LSTM models are retrained to provide accurate predictions using real-time IoT sensor data. The framework employs predictive analytics, robotic sorting, and IoT sensors for numerous benefits. Better waste collection routes and schedules, greater recycling rates, fewer operating costs, and less environmental effects. |
|---|---|
| AbstractList | Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term memory (LSTM) models, the research provides a waste management paradigm shift. Real-time bin and container fill monitoring is done by strategically placing Internet of Things (IoT) sensors across waste pickup sites. These sensors track waste generation patterns throughout time. With information, LSTM-based prediction algorithms can reliably predict when garbage cans are full. LSTM models are trained in past data to grasp complicated waste generation and accumulation processes. The framework integrates robotic sorting technologies into the waste management ecosystem to further enhance recycling efficiency. Robots equipped with sophisticated sensors, cameras, and ML algorithms can now sort recyclable waste autonomously. The proposed system is environmentally adaptive. LSTM models are retrained to provide accurate predictions using real-time IoT sensor data. The framework employs predictive analytics, robotic sorting, and IoT sensors for numerous benefits. Better waste collection routes and schedules, greater recycling rates, fewer operating costs, and less environmental effects. |
| Author | G, Padma Malini Annamalai, Perumal K.R, Jansi A, Latha K, Saravanan M, Muthulekshmi |
| Author_xml | – sequence: 1 givenname: Perumal surname: Annamalai fullname: Annamalai, Perumal email: aplfeature@gmail.com organization: Mphasis Corporation,Houston,Texas,USA – sequence: 2 givenname: Saravanan surname: K fullname: K, Saravanan email: saranbeat@gmail.com organization: Dhanlakshmi Srinivasan University,School of Engineering and Technology,Department of Computer Science and Engineering,Chennai,Tamil Nadu,India – sequence: 3 givenname: Jansi surname: K.R fullname: K.R, Jansi email: jansik@srmist.edu.in organization: SRM Institute of Science and Technology,Department of Computing Technologies,Chennai,Tamil Nadu,India – sequence: 4 givenname: Latha surname: A fullname: A, Latha email: lathaganesan.a@gmail.com organization: Velammal College of Engineering and Technology,Department of Civil Engineering,Madurai,Tamil Nadu,India – sequence: 5 givenname: Muthulekshmi surname: M fullname: M, Muthulekshmi email: muthulekshmisrinivasan@gmail.com organization: Saveetha University,Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,Department of Biomedical Engineering,Chennai,Tamil Nadu,India – sequence: 6 givenname: Padma Malini surname: G fullname: G, Padma Malini email: pm2003dance@gmail.com organization: St. Joseph's College of Engineering,Department of Management Studies,Chennai,Tamil Nadu,India |
| BookMark | eNo1kMtKw0AYhUdRsNa-gYt5gdS5ZG7LGq0WWlpsxGWZTP7UkWRSMoNQn16LujqcD863ONfoIvQBEMKUTCkl5m5RFNuNzKnmU0aYOEFtKJNnaGKUplKKXCgu6TkaMc1lRrXiV2gS4wchhFOlJSUj1D4cg-28w282JsArG-weOggJrw_Jd_7LJt8H_Bp92OPltlxl9zZCjTcD1N4l_wl4Fmx7TN5FbEONX_qq_yl42w_ptCnBvYe-7fce4g26bGwbYfKXY1TOH8viOVuunxbFbJl5w1OWG1tRpoVmqjLKNrqqawem0pQ5K4FKbivBGpk3IEmlGlM76oSQuSJOcMP4GN3-aj0A7A6D7-xw3P3_w78BEOldww |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCSP64183.2025.11089126 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665457361 1665457368 |
| EISSN | 2836-1873 |
| EndPage | 1229 |
| ExternalDocumentID | 11089126 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-49ab1285827b97af8bddce9b812ca6e163ab52f64fe60b7f9dc1c556470c53923 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 06 17:55:49 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-49ab1285827b97af8bddce9b812ca6e163ab52f64fe60b7f9dc1c556470c53923 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11089126 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-5 |
| PublicationDateYYYYMMDD | 2025-06-05 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Communications and Signal Processing, International Conference on |
| PublicationTitleAbbrev | ICCSP |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003178610 |
| Score | 1.9139583 |
| Snippet | Managing urban waste today calls for innovative approaches that use advanced technologies. With predictive analytics, robotic sorting, and long short-term... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1224 |
| SubjectTerms | Biological system modeling Data Analysis Data models Garbage Management Internet of Things Long short term memory Long Short-term Memory Model Predictive analytics Predictive models Real-time systems Robotic Sorting Sensors Sorting Waste management |
| Title | Dynamic Waste Management Optimization Using LSTM-Based Predictive Analytics and Robotic Sorting Technologies |
| URI | https://ieeexplore.ieee.org/document/11089126 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPhmD16TJuk-slerpYqtxVbsrexTRE1E0ou_3tlN06IgeEqykLDMhP1mZ7_5BqELzYniTNDIOcUjQpSOcq841LM9LZg1idA-3zEas-EjuZ3T-apYPdTCWGsD-czG_jac5ZtSL32qrOsp6yLNWAu1eM7qYq11QgWAMIdYoGHrJKJ70-9PJ4zATwv7wIzGzes_GqkEHBnsoHEzg5o-8hovKxXrr1_ijP-e4i7qbEr28GQNRntoyxb76O2q7jePnyQ4E2-oLvgeVor3VQkmDrQBfDedjaJLADUDH_LHN34hxEG0xEs5Y1kY_FCqEh7wtPTiA894nZiH_XYHzQbXs_4wWrVXiF5Er4qIkArAieYZV4JLlytjtBUKEF9LZiFOk4pmjhFnWaK4E0anmlJGeKIpRFW9A9QuysIeIsw5FZnJmCVUgrmd0CJVcE11Jhzj8gh1vKUWH7WAxqIx0vEf4ydo2zssMLLoKWpXn0t7BthfqfPg82_q7684 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHOAEiCJ2fOCaNIuX-EqhKtCWigbRWxVvCAEJQumFr2ecNK1AQuKU5WBZM5bfePzmDUIXihPJmaCetZJ7hEjlJU5xKDaxEszoQCiX7xiOWP-R3E7pdFGsXtXCGGMq8pnx3Wt1l68LNXepso6jrIswYutogxJCaF2utUypABQmEA00fJ1AdG663cmYEVi2cBKMqN8M8KOVSoUkvW00auZQE0he_XkpffX1S57x35PcQe1V0R4eL-FoF62ZfA-9XdUd5_FTBu7EK7ILvoe94n1RhIkr4gAeTNKhdwmwpmEgd4HjtkJcyZY4MWec5Ro_FLKADzwpnPzAM16m5uHE3UZp7zrt9r1FgwXvRcSlR0QmAZ5oEnEpeGYTqbUyQgLmq4wZiNQySSPLiDUskNwKrUJFKSM8UBTiqngftfIiNwcIc05FpCNmCM3A3FYoEUp4hioSlvHsELWdpWYftYTGrDHS0R__z9FmPx0OZoOb0d0x2nLOq_hZ9AS1ys-5OYVIoJRnlf-_AUV4soU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Communications+and+Signal+Processing%2C+International+Conference+on&rft.atitle=Dynamic+Waste+Management+Optimization+Using+LSTM-Based+Predictive+Analytics+and+Robotic+Sorting+Technologies&rft.au=Annamalai%2C+Perumal&rft.au=K%2C+Saravanan&rft.au=K.R%2C+Jansi&rft.au=A%2C+Latha&rft.date=2025-06-05&rft.pub=IEEE&rft.eissn=2836-1873&rft.spage=1224&rft.epage=1229&rft_id=info:doi/10.1109%2FICCSP64183.2025.11089126&rft.externalDocID=11089126 |