Multi-Modal Fusion of Spatial and Temporal Features for Radar Signal Sensing

Communication and radar signal sensing are pivotal for modern wireless and intelligent sensing systems. Traditional techniques, including feature-engineered methods and standalone neural networks, often struggle to handle multi-modal data effectively and perform poorly in low signal-to-noise ratio (...

Full description

Saved in:
Bibliographic Details
Published inDevices for Integrated Circuit pp. 182 - 187
Main Authors Padmaja, Amirineni Rama L, Meyyappan, Senthilkumar, Gobinathan, Praveetha, Devi, N. Nirmala, Vallathan, G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.04.2025
Subjects
Online AccessGet full text
ISSN2996-3044
DOI10.1109/DevIC63749.2025.11012197

Cover

Abstract Communication and radar signal sensing are pivotal for modern wireless and intelligent sensing systems. Traditional techniques, including feature-engineered methods and standalone neural networks, often struggle to handle multi-modal data effectively and perform poorly in low signal-to-noise ratio (SNR) environments. These approaches fail to capture spatial and temporal dependencies and lack mechanisms for leveraging inter-modal relationships. A CNN-LSTM-Based Attention-Augmented Multi-Feature Fusion Network has been proposed to overcome these challenges. This architecture utilizes convolutional neural networks (CNNs) for spatial feature extraction, long short-term memory (LSTM) networks for modelling temporal dependencies, and an attention mechanism to refine features across modalities dynamically. The model ensures robust signal sensing under challenging conditions by integrating IQ data, spectrograms, and cyclic spectrum representations. Extensive experiments validate the proposed method's superiority, achieving over 99.7% sensing accuracy over Gaussian and racian channel. The network demonstrates strong resilience in SNRs as low as -5 dB, outperforming traditional methods. Performance metrics and experimental results confirm its effectiveness and emphasize its potential as a robust framework for advancing communication and radar signal sensing.
AbstractList Communication and radar signal sensing are pivotal for modern wireless and intelligent sensing systems. Traditional techniques, including feature-engineered methods and standalone neural networks, often struggle to handle multi-modal data effectively and perform poorly in low signal-to-noise ratio (SNR) environments. These approaches fail to capture spatial and temporal dependencies and lack mechanisms for leveraging inter-modal relationships. A CNN-LSTM-Based Attention-Augmented Multi-Feature Fusion Network has been proposed to overcome these challenges. This architecture utilizes convolutional neural networks (CNNs) for spatial feature extraction, long short-term memory (LSTM) networks for modelling temporal dependencies, and an attention mechanism to refine features across modalities dynamically. The model ensures robust signal sensing under challenging conditions by integrating IQ data, spectrograms, and cyclic spectrum representations. Extensive experiments validate the proposed method's superiority, achieving over 99.7% sensing accuracy over Gaussian and racian channel. The network demonstrates strong resilience in SNRs as low as -5 dB, outperforming traditional methods. Performance metrics and experimental results confirm its effectiveness and emphasize its potential as a robust framework for advancing communication and radar signal sensing.
Author Vallathan, G.
Gobinathan, Praveetha
Meyyappan, Senthilkumar
Padmaja, Amirineni Rama L
Devi, N. Nirmala
Author_xml – sequence: 1
  givenname: Amirineni Rama L
  surname: Padmaja
  fullname: Padmaja, Amirineni Rama L
  email: padmajamurthy30.ece@gcet.edu.in
  organization: Geethanjali College of Engineering and Technology,Department of ECE,Hyderabad,India
– sequence: 2
  givenname: Senthilkumar
  surname: Meyyappan
  fullname: Meyyappan, Senthilkumar
  email: kathir_senthil@yahoo.co.in
  organization: Nalla Malla Reddy Engineering College,Department of ECE,Hyderabad,India
– sequence: 3
  givenname: Praveetha
  surname: Gobinathan
  fullname: Gobinathan, Praveetha
  email: pthan@jazanu.edu.sa
  organization: Jazan University,College of Engineering and Computer Science,Department of Computer Science,Jazan,Kingdom of Saudi Arabia
– sequence: 4
  givenname: N. Nirmala
  surname: Devi
  fullname: Devi, N. Nirmala
  email: nirmala.devi.72@gmail.com
  organization: Aurora's Technological and Research Institute,Department of ECE,Hyderabad,India
– sequence: 5
  givenname: G.
  surname: Vallathan
  fullname: Vallathan, G.
  email: gvallathan@gmail.com
  organization: Geethanjali College of Engineering & Technology,Department of ECE,Hyderabad,India
BookMark eNo1j91KwzAcxaMoOGffwIu8QGe-mjSXUt0cdAi29yNt_h2RLin9EHx7M9Sbc-B34HDOPbrxwQNCmJINpUQ_vcDXvpBcCb1hhGUXSBnV6golWumcZ4TryNQ1WjGtZcqJEHcomaZPQginuaa5WKHysPSzSw_Bmh5vl8kFj0OHq8HMLhLjLa7hPITxEoOZlxEm3IURfxhrRly5k49JBX5y_vSAbjvTT5D8-RrV29e6eEvL992-eC5Tp_mcCmk0EXEc4y1AJ2Te8Kwl8QQwAJIJy1XOWmozBY1UVnXCqkZEzSQwbvkaPf7WOgA4DqM7m_H7-P-f_wAKIFEA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DevIC63749.2025.11012197
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350391107
EISSN 2996-3044
EndPage 187
ExternalDocumentID 11012197
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-46a90439123ceef468b35c0202e2ee054d3782c1d57eb67d7f4d7b4f4d56e23d3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:38:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-46a90439123ceef468b35c0202e2ee054d3782c1d57eb67d7f4d7b4f4d56e23d3
PageCount 6
ParticipantIDs ieee_primary_11012197
PublicationCentury 2000
PublicationDate 2025-April-5
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-5
  day: 05
PublicationDecade 2020
PublicationTitle Devices for Integrated Circuit
PublicationTitleAbbrev DevIC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189184
Score 1.9091594
Snippet Communication and radar signal sensing are pivotal for modern wireless and intelligent sensing systems. Traditional techniques, including feature-engineered...
SourceID ieee
SourceType Publisher
StartPage 182
SubjectTerms Accuracy
Attention mechanism
CNN
Convolutional neural networks
Feature extraction
Long short term memory
LSTM
Multi-Feature Fusion
Radar
Radar Signal Sensing
Sensors
Signal to noise ratio
Spectrogram
Wireless communication
Wireless sensor networks
Title Multi-Modal Fusion of Spatial and Temporal Features for Radar Signal Sensing
URI https://ieeexplore.ieee.org/document/11012197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1sT55UrPjNHrwmbbObbPdcLVVsEVuht5LdnZSiJFITD_56ZzaNoiB4CSEhZJlZmJfJe_MYu3LOkmG0IZa4DaQlmxcl02BgAPPtlLaGGvqTaTJ-kneLeLEVq3stDAB48hmEdOr_5bvCVtQq6_ZpGFVfqxZrKaVrsdZXQwU3p8bPlYat09Pda3i_HSZCSRKkRHHYPP7DSMXXkdEemzYrqOkjz2FVmtB-_BrO-O8l7rPOt2SPP3wVowO2A_khu_fy2mBSuPSFjypqjPEi42RDjNuOp7nj83o0Fd4GP-LzjSOK5Y-pSzd8tl7hNuMz4rjnqw6bj27mw3GwtU8I1lqUgUxSTbpXLE347kwmAyNii-gwgggAkZoTiA5s38Vki6KcyqRTRuIxTiASThyxdl7kcMy4zTDcGqGN6QkJIk5tYhKQDtEBAqJMn7AORWL5Wg_IWDZBOP3j-hnbpYR4Akx8ztrlpoILrO2lufQ5_QRDOqJo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_DabmuTZjlPx6bbEFdht9Ekr2MorczWg3-9L-k6URC8lNJAG_IC78vr972PkBtjtDWMVpYlrj2mrc2LYInXVYDxNkJqZQv640k0eGb3Mz5bi9WdFgYAHPkMfHvr_uWbXJe2VNbq2GZUHSm2yQ7HY4Wo5FqbkgpuT4kHlpqv05atW_gY9qJQMCtJCbhfv-CHlYrLJP19MqnnUBFIXvyyUL7-_NWe8d-TPCDNb9Eefdyko0OyBdkRGTmBrTfOTfJK-6UtjdE8pdaIGDceTTJD46o5FQ6Da_L5ThHH0qfEJCs6XS5wo9GpZblniyaJ-3dxb-CtDRS8pQwLj0WJtMpXTE747ZRFXRVyjfgwgAAAsZoJER_ojuHWGEUYkTIjFMMrjyAITXhMGlmewQmhOhUCkUxXqnbIIOSJjlQEzCA-QEiUylPStCsxf6taZMzrRTj74_k12R3E49F8NJw8nJM9GxxHh-EXpFGsSrjETF-oKxffL_8spbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Devices+for+Integrated+Circuit&rft.atitle=Multi-Modal+Fusion+of+Spatial+and+Temporal+Features+for+Radar+Signal+Sensing&rft.au=Padmaja%2C+Amirineni+Rama+L&rft.au=Meyyappan%2C+Senthilkumar&rft.au=Gobinathan%2C+Praveetha&rft.au=Devi%2C+N.+Nirmala&rft.date=2025-04-05&rft.pub=IEEE&rft.eissn=2996-3044&rft.spage=182&rft.epage=187&rft_id=info:doi/10.1109%2FDevIC63749.2025.11012197&rft.externalDocID=11012197