Intelligent Feedback Analytics- Sentiment Analysis and Defect Detection in Elevating Product Quality and Customer Experience

The competitiveness of the market requires customer feedback to achieve product success and innovation. This study presents a system for automatic product feedback analytics which applies high-tech integration methods to convert customer feedback into usable insights. A system utilizes voice-to-text...

Full description

Saved in:
Bibliographic Details
Published inCommunications and Signal Processing, International Conference on pp. 954 - 959
Main Authors Padoor, Veda, P, Tharun Kumar, Pani, Y L Krishna, Bhalke, Vaibhavi, Kasturi, Nivedita
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.06.2025
Subjects
Online AccessGet full text
ISSN2836-1873
DOI10.1109/ICCSP64183.2025.11088646

Cover

Abstract The competitiveness of the market requires customer feedback to achieve product success and innovation. This study presents a system for automatic product feedback analytics which applies high-tech integration methods to convert customer feedback into usable insights. A system utilizes voice-to-text conversion models to convert audio feedback into text which achieves high accuracy rates throughout the process except when there are some exceptions. The system implements text analysis methods together with sentiment analysis and keyword extraction and theme identification processes for value insight extraction. Organizations should prioritize defect classification and prioritization strategies as their essential foundation because this analysis method uses sentiment and context to identify which defects require immediate attention. This integrated and adaptable method facilitates organizations to utilize customer data systematically for impactful results while making data-based choices regarding product enhancement. Based on its use of the BERT model the system achieves sentiment analysis accuracy at 94.7 percent thereby reaching 94.7 percent precision, recall, and F1 Score benchmark. The integrated system utilizes BERT for negativeness intensity while employing spaCy dependency parsing and zero-shot classification to extract features and classify defects which results in accurate operational outcomes with 80 percentage success rates and precision and recall scores of 95 percentage. Previous research indicates that the proposed framework successfully generates highly capable results for productive insights which can be quantified through existing metrics.
AbstractList The competitiveness of the market requires customer feedback to achieve product success and innovation. This study presents a system for automatic product feedback analytics which applies high-tech integration methods to convert customer feedback into usable insights. A system utilizes voice-to-text conversion models to convert audio feedback into text which achieves high accuracy rates throughout the process except when there are some exceptions. The system implements text analysis methods together with sentiment analysis and keyword extraction and theme identification processes for value insight extraction. Organizations should prioritize defect classification and prioritization strategies as their essential foundation because this analysis method uses sentiment and context to identify which defects require immediate attention. This integrated and adaptable method facilitates organizations to utilize customer data systematically for impactful results while making data-based choices regarding product enhancement. Based on its use of the BERT model the system achieves sentiment analysis accuracy at 94.7 percent thereby reaching 94.7 percent precision, recall, and F1 Score benchmark. The integrated system utilizes BERT for negativeness intensity while employing spaCy dependency parsing and zero-shot classification to extract features and classify defects which results in accurate operational outcomes with 80 percentage success rates and precision and recall scores of 95 percentage. Previous research indicates that the proposed framework successfully generates highly capable results for productive insights which can be quantified through existing metrics.
Author Kasturi, Nivedita
P, Tharun Kumar
Pani, Y L Krishna
Bhalke, Vaibhavi
Padoor, Veda
Author_xml – sequence: 1
  givenname: Veda
  surname: Padoor
  fullname: Padoor, Veda
  email: veda2k3@gmail.com
  organization: PES University,Dept. of CSE,Bangalore,India
– sequence: 2
  givenname: Tharun Kumar
  surname: P
  fullname: P, Tharun Kumar
  email: tharunkp41@gmail.com
  organization: PES University,Dept. of CSE,Bangalore,India
– sequence: 3
  givenname: Y L Krishna
  surname: Pani
  fullname: Pani, Y L Krishna
  email: ylkpani@gmail.com
  organization: PES University,Dept. of CSE,Bangalore,India
– sequence: 4
  givenname: Vaibhavi
  surname: Bhalke
  fullname: Bhalke, Vaibhavi
  email: vaibhavibhalke03@gmail.com
  organization: PES University,Dept. of CSE,Bangalore,India
– sequence: 5
  givenname: Nivedita
  surname: Kasturi
  fullname: Kasturi, Nivedita
  email: niveditak@pes.edu
  organization: PES University,Dept. of CSE,Bangalore,India
BookMark eNo1kM1OAjEUhavRRETewEVfYLCdTn9mSUZAEhIxsCelvSXVoUOmxTiJD--AejZfcr7cuzj36CY0ARDClIwpJeXToqrWK1FQxcY5yfm5VEoU4gqNSqmoELzgkgl6jQa5YiKjSrI7NIrxnRDCqFSCkgH6XoQEde33EBKeAdidNh94EnTdJW9ihte98IezvZTRR6yDxc_gwKQeqYdvAvYBT2v41MmHPV61jT31-u2ka5-6y0V1iqk5QIunX0doPQQDD-jW6TrC6I9DtJlNN9VLtnydL6rJMvMlS1muobCcSJDE5cppEJRrLuQOhHLEGOsKbZzpI62wyjJaWkWN47ncOVoyNkSPv289AGyPrT_ottv-78V-AFKbZPU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSP64183.2025.11088646
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665457361
1665457368
EISSN 2836-1873
EndPage 959
ExternalDocumentID 11088646
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-2ae4d507e70f28fae615a567be68f0ccdf4acfcccc7d6d8d319d81cf527bf1933
IEDL.DBID RIE
IngestDate Wed Aug 06 17:55:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-2ae4d507e70f28fae615a567be68f0ccdf4acfcccc7d6d8d319d81cf527bf1933
PageCount 6
ParticipantIDs ieee_primary_11088646
PublicationCentury 2000
PublicationDate 2025-June-5
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-5
  day: 05
PublicationDecade 2020
PublicationTitle Communications and Signal Processing, International Conference on
PublicationTitleAbbrev ICCSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003178610
Score 1.9140011
Snippet The competitiveness of the market requires customer feedback to achieve product success and innovation. This study presents a system for automatic product...
SourceID ieee
SourceType Publisher
StartPage 954
SubjectTerms Accuracy
BERT Multilingual Model
Defect Prioritization
Feature extraction
OpenAI Whisper
Organizations
Product design
Quality assessment
Sentiment analysis
Signal processing
spaCy
Systematics
Technological innovation
Text analysis
Zero Shot Classification
Title Intelligent Feedback Analytics- Sentiment Analysis and Defect Detection in Elevating Product Quality and Customer Experience
URI https://ieeexplore.ieee.org/document/11088646
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl6ztV1-9Vw3Ng9jsAm7jTR5kTHtZLQHxT_eJF03FAR7aWlJ80hS3pfX730PoYfUaisiroiODCM0NkCUlTmhKpdu_m3CTGBbTPjomT4t2GKXrB5yYQAgkM-g6y_Dv3yz0ZUPlfU8ZV1yyluoJSSvk7X2ARXnCKXDAg1bJ0p74yybTTl1i9btAxPWbZr_KKQS_MjwBE0aC2r6yLpblXlXf_4SZ_y3iaeoc0jZw9O9MzpDR1Cco6_xXnCzxEP3KFd6jYMOiVdnJnjmuUL-jbgRJ8GqMPgRPMnDncpA1CrwqsCDV_DR2-LFd-NFYnEtv_ERWmSVA5FvsMUH6eQOmg8H82xEduUWyCrtlyRRQI1DhyAim0irwGEdxbjIgUsbaW0sVdpqdwjDjTTu2zUy1pYlIrcOBvYvULvYFHCJsKHKMhorJawDKIalMYiU69jXX3GIIb1CHT9yy_daUGPZDNr1H_dv0LGfwMDQYreoXW4ruHNYoMzvwxr4BpBmtxI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXhN13ZJ2p7rxqZzDDZht5HmQ8a0k9EeFP94X9J1Q0Ewl4aWpCEfvF9ff-_3ELpLjDSRzwWRvmKEBkoTYeKMUJHFsP4mZMqxLYa890wfpmy6DlZ3sTBaa0c-056tun_5ailL6yprWcp6zCnfRXuMUsqqcK2NSwVMYQxooObr-Emrn6bjEaewbeFLMGRe3cGPVCrOknQP0bAeQ0UgWXhlkXny85c8478HeYSa26A9PNqYo2O0o_MT9NXfSG4WuAuPMiEX2CmRWH1mgseWLWR7xLU8CRa5wvfa0jzgUjiqVo7nOe68auu_zV_sa6xMLK4EOD5ci7QEGPmmV3grntxEk25nkvbIOuECmSftgoRCUwX4UEe-CWMjNKAdwXiUaR4bX0plqJBGQokUV7GC06viQBoWRpkBINg-RY18meszhBUVhtFAiMgARFEsCXSUcBnYDCyAGZJz1LQzN3uvJDVm9aRd_HH_Fu33Jk-D2aA_fLxEB3YxHV-LXaFGsSr1NSCDIrtx--EbUEO6Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Communications+and+Signal+Processing%2C+International+Conference+on&rft.atitle=Intelligent+Feedback+Analytics-+Sentiment+Analysis+and+Defect+Detection+in+Elevating+Product+Quality+and+Customer+Experience&rft.au=Padoor%2C+Veda&rft.au=P%2C+Tharun+Kumar&rft.au=Pani%2C+Y+L+Krishna&rft.au=Bhalke%2C+Vaibhavi&rft.date=2025-06-05&rft.pub=IEEE&rft.eissn=2836-1873&rft.spage=954&rft.epage=959&rft_id=info:doi/10.1109%2FICCSP64183.2025.11088646&rft.externalDocID=11088646