Fast Maximization of Current Flow Group Closeness Centrality

Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node g...

Full description

Saved in:
Bibliographic Details
Published inData engineering pp. 3220 - 3233
Main Authors Xia, Haisong, Zhang, Zhongzhi
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.05.2025
Subjects
Online AccessGet full text
ISSN2375-026X
DOI10.1109/ICDE65448.2025.00241

Cover

Abstract Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node group S subject to the cardinality constraint \vert S \vert =k<<n . Despite the proven NP-hardness of this problem, we propose two novel greedy algorithms for its solution. Our algorithms are based on spanning forest sampling and Schur complement, which exhibit nearly linear time complexities and achieve an approximation factor of 1- k/k-1 -∊ for any 0 < ∊ < 1. Extensive experiments on real-world graphs illustrate that our algorithms outperform the state-of-the-art method in terms of efficiency and effectiveness, scaling to graphs with millions of nodes.
AbstractList Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node group S subject to the cardinality constraint \vert S \vert =k<<n . Despite the proven NP-hardness of this problem, we propose two novel greedy algorithms for its solution. Our algorithms are based on spanning forest sampling and Schur complement, which exhibit nearly linear time complexities and achieve an approximation factor of 1- k/k-1 -∊ for any 0 < ∊ < 1. Extensive experiments on real-world graphs illustrate that our algorithms outperform the state-of-the-art method in terms of efficiency and effectiveness, scaling to graphs with millions of nodes.
Author Zhang, Zhongzhi
Xia, Haisong
Author_xml – sequence: 1
  givenname: Haisong
  surname: Xia
  fullname: Xia, Haisong
  email: hsxia22@m.fudan.edu.cn
  organization: School of Computer Science, Fudan University,Shanghai,China,200433
– sequence: 2
  givenname: Zhongzhi
  surname: Zhang
  fullname: Zhang, Zhongzhi
  email: zhangzz@fudan.edu.cn
  organization: School of Computer Science, Fudan University,Shanghai,China,200433
BookMark eNotjE9LwzAcQKMoOGe_wQ75Aq2__GsS8CJxm4OJlx28jdj-CpGuGUmHzk9vYb7LOzx49-RmiAMSsmBQMQb2ceNelrWS0lQcuKoAuGRXpLDaGiGYEjUIe01mXGhVAq8_7kiR8xdMWMmYghl5Wvk80jf_Ew7h148hDjR21J1SwmGkqz5-03WKpyN1fcw4YM7UTSX5PoznB3Lb-T5j8e852a2WO_dabt_XG_e8LYMVY8mB1VoDqE8pvOat9lrUTSOw0bJr0RqupeyQa0DJreTGMwFYK9Vqo5rWijlZXLYBEffHFA4-nfdsglujxR9m_UoT
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDE65448.2025.00241
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Computer Science
EISBN 9798331536039
EISSN 2375-026X
EndPage 3233
ExternalDocumentID 11112987
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62372112,61872093
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-201677005b43a72d7a736cc3ec74fde982744fe270e429428a130e655d785cd93
IEDL.DBID RIE
IngestDate Wed Aug 27 07:41:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-201677005b43a72d7a736cc3ec74fde982744fe270e429428a130e655d785cd93
PageCount 14
ParticipantIDs ieee_primary_11112987
PublicationCentury 2000
PublicationDate 2025-May-19
PublicationDateYYYYMMDD 2025-05-19
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-19
  day: 19
PublicationDecade 2020
PublicationTitle Data engineering
PublicationTitleAbbrev ICDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941150
Score 2.2939782
Snippet Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected...
SourceID ieee
SourceType Publisher
StartPage 3220
SubjectTerms Approximation algorithms
centrality
combinatorial optimization
Current measurement
Data engineering
Electrical resistance measurement
Forestry
Graph theory
Greedy algorithms
Optimization
Resistance
resistance distance
spectral graph theory
Time complexity
Title Fast Maximization of Current Flow Group Closeness Centrality
URI https://ieeexplore.ieee.org/document/11112987
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sD-KpWit-k4PXbbubzSYBb7WlCi0eKvRWsskEirUrdovirzdJt1UEwVvYS5aEyZuvNw_gRklmRU7TiNEMI2eJGDmvNYlSZp17IBIj0Vd0R-Ns-JQ-TNm0IqsHLgwihuYzbPtlqOWbQq99qqzjzTtxQXINalxkG7LWLqHi4hTv3VT0uLgrO_e9u37G0tDBlYTUidd9_yGiEjBk0IDxdvdN68hze13mbf35azDjv3_vEFrfdD3yuAOiI9jDZRMaW70GUplvE_a9DqcXdzuG24FalWSkPuYvFRGTFJZUw5rIYFG8k5CVIr1FsQrPIanywM5rb8Fk0J_0hlElpBDNJS2dIcQZ587c8pQqnhiuOM20pqh5ag1K4acEWkx4Fx06uXhEOWDDjDHDBdNG0hOoL4slngLRJha2K5RlysGfFkrSHC2LjY4FpsKeQcufy-x1Mypjtj2S8z--X8CBvxtfjo_lJdTLtzVeOZQv8-twu192KaVc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT1N58Tf5uC129okbQLe5sqm2_AwYbeRJi8wnKu4DsW_3iTrpgiCtxIKDQmv3_v1vQ-hGymY4RmhASMxBNYSIbBeaxRQZqx7wCMtwFV0B8O4-0Tvx2xcktU9FwYAfPMZNNyjr-XrXC1dqqzpzDuyQfI22mGUUraia21SKjZScf5NSZALW6LZa991Yvuq6-GKfPLEKb__kFHxKJJW0XD9_VXzyHNjWWQN9flrNOO_N3iA6t-EPfy4gaJDtAXzGqquFRtwacA1tOuUOJ282xG6TeWiwAP5MX0pqZg4N7gc14TTWf6OfV4Kt2f5wv8QcZkJtn57HY3SzqjdDUophWAqSGFNIYyTxBpcRolMIp3IhMRKEVAJNRoEd3MCDURJCyw-2YhEWmiDmDGdcKa0IMeoMs_ncIKw0iE3LS4NkxYAFZeCZGBYqFXIgXJziuruXCavq2EZk_WRnP2xfo32uqNBf9LvDR_O0b67J1ecD8UFqhRvS7i0mF9kV_6mvwBQI6ip
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=Fast+Maximization+of+Current+Flow+Group+Closeness+Centrality&rft.au=Xia%2C+Haisong&rft.au=Zhang%2C+Zhongzhi&rft.date=2025-05-19&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=3220&rft.epage=3233&rft_id=info:doi/10.1109%2FICDE65448.2025.00241&rft.externalDocID=11112987