Fast Maximization of Current Flow Group Closeness Centrality
Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node g...
        Saved in:
      
    
          | Published in | Data engineering pp. 3220 - 3233 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        19.05.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2375-026X | 
| DOI | 10.1109/ICDE65448.2025.00241 | 
Cover
| Abstract | Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node group S subject to the cardinality constraint \vert S \vert =k<<n . Despite the proven NP-hardness of this problem, we propose two novel greedy algorithms for its solution. Our algorithms are based on spanning forest sampling and Schur complement, which exhibit nearly linear time complexities and achieve an approximation factor of 1- k/k-1 -∊ for any 0 < ∊ < 1. Extensive experiments on real-world graphs illustrate that our algorithms outperform the state-of-the-art method in terms of efficiency and effectiveness, scaling to graphs with millions of nodes. | 
    
|---|---|
| AbstractList | Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected graph with n nodes. Given the widespread applications of identifying crucial nodes, we investigate the problem of maximizing CFCC for a node group S subject to the cardinality constraint \vert S \vert =k<<n . Despite the proven NP-hardness of this problem, we propose two novel greedy algorithms for its solution. Our algorithms are based on spanning forest sampling and Schur complement, which exhibit nearly linear time complexities and achieve an approximation factor of 1- k/k-1 -∊ for any 0 < ∊ < 1. Extensive experiments on real-world graphs illustrate that our algorithms outperform the state-of-the-art method in terms of efficiency and effectiveness, scaling to graphs with millions of nodes. | 
    
| Author | Zhang, Zhongzhi Xia, Haisong  | 
    
| Author_xml | – sequence: 1 givenname: Haisong surname: Xia fullname: Xia, Haisong email: hsxia22@m.fudan.edu.cn organization: School of Computer Science, Fudan University,Shanghai,China,200433 – sequence: 2 givenname: Zhongzhi surname: Zhang fullname: Zhang, Zhongzhi email: zhangzz@fudan.edu.cn organization: School of Computer Science, Fudan University,Shanghai,China,200433  | 
    
| BookMark | eNotjE9LwzAcQKMoOGe_wQ75Aq2__GsS8CJxm4OJlx28jdj-CpGuGUmHzk9vYb7LOzx49-RmiAMSsmBQMQb2ceNelrWS0lQcuKoAuGRXpLDaGiGYEjUIe01mXGhVAq8_7kiR8xdMWMmYghl5Wvk80jf_Ew7h148hDjR21J1SwmGkqz5-03WKpyN1fcw4YM7UTSX5PoznB3Lb-T5j8e852a2WO_dabt_XG_e8LYMVY8mB1VoDqE8pvOat9lrUTSOw0bJr0RqupeyQa0DJreTGMwFYK9Vqo5rWijlZXLYBEffHFA4-nfdsglujxR9m_UoT | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/ICDE65448.2025.00241 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Forestry Computer Science  | 
    
| EISBN | 9798331536039 | 
    
| EISSN | 2375-026X | 
    
| EndPage | 3233 | 
    
| ExternalDocumentID | 11112987 | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62372112,61872093 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO  | 
    
| ID | FETCH-LOGICAL-i93t-201677005b43a72d7a736cc3ec74fde982744fe270e429428a130e655d785cd93 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 07:41:07 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i93t-201677005b43a72d7a736cc3ec74fde982744fe270e429428a130e655d785cd93 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | ieee_primary_11112987 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-May-19 | 
    
| PublicationDateYYYYMMDD | 2025-05-19 | 
    
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Data engineering | 
    
| PublicationTitleAbbrev | ICDE | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000941150 | 
    
| Score | 2.2939782 | 
    
| Snippet | Derived from effective resistances, the current flow closeness centrality (CFCC) for a group of nodes measures the importance of node groups in an undirected... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 3220 | 
    
| SubjectTerms | Approximation algorithms centrality combinatorial optimization Current measurement Data engineering Electrical resistance measurement Forestry Graph theory Greedy algorithms Optimization Resistance resistance distance spectral graph theory Time complexity  | 
    
| Title | Fast Maximization of Current Flow Group Closeness Centrality | 
    
| URI | https://ieeexplore.ieee.org/document/11112987 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sD-KpWit-k4PXbbubzSYBb7WlCi0eKvRWsskEirUrdovirzdJt1UEwVvYS5aEyZuvNw_gRklmRU7TiNEMI2eJGDmvNYlSZp17IBIj0Vd0R-Ns-JQ-TNm0IqsHLgwihuYzbPtlqOWbQq99qqzjzTtxQXINalxkG7LWLqHi4hTv3VT0uLgrO_e9u37G0tDBlYTUidd9_yGiEjBk0IDxdvdN68hze13mbf35azDjv3_vEFrfdD3yuAOiI9jDZRMaW70GUplvE_a9DqcXdzuG24FalWSkPuYvFRGTFJZUw5rIYFG8k5CVIr1FsQrPIanywM5rb8Fk0J_0hlElpBDNJS2dIcQZ587c8pQqnhiuOM20pqh5ag1K4acEWkx4Fx06uXhEOWDDjDHDBdNG0hOoL4slngLRJha2K5RlysGfFkrSHC2LjY4FpsKeQcufy-x1Mypjtj2S8z--X8CBvxtfjo_lJdTLtzVeOZQv8-twu192KaVc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QT1N58Tf5uC129okbQLe5sqm2_AwYbeRJi8wnKu4DsW_3iTrpgiCtxIKDQmv3_v1vQ-hGymY4RmhASMxBNYSIbBeaxRQZqx7wCMtwFV0B8O4-0Tvx2xcktU9FwYAfPMZNNyjr-XrXC1dqqzpzDuyQfI22mGUUraia21SKjZScf5NSZALW6LZa991Yvuq6-GKfPLEKb__kFHxKJJW0XD9_VXzyHNjWWQN9flrNOO_N3iA6t-EPfy4gaJDtAXzGqquFRtwacA1tOuUOJ282xG6TeWiwAP5MX0pqZg4N7gc14TTWf6OfV4Kt2f5wv8QcZkJtn57HY3SzqjdDUophWAqSGFNIYyTxBpcRolMIp3IhMRKEVAJNRoEd3MCDURJCyw-2YhEWmiDmDGdcKa0IMeoMs_ncIKw0iE3LS4NkxYAFZeCZGBYqFXIgXJziuruXCavq2EZk_WRnP2xfo32uqNBf9LvDR_O0b67J1ecD8UFqhRvS7i0mF9kV_6mvwBQI6ip | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=Fast+Maximization+of+Current+Flow+Group+Closeness+Centrality&rft.au=Xia%2C+Haisong&rft.au=Zhang%2C+Zhongzhi&rft.date=2025-05-19&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=3220&rft.epage=3233&rft_id=info:doi/10.1109%2FICDE65448.2025.00241&rft.externalDocID=11112987 |