Image Segmentation for MRI Brain Tumor Detection Using Advance AI algorithm

The existence of a brain tumor indicates an unusual growth of cells in the brain, manifesting as either benign (non-cancerous) or malignant (cancerous). Artificial Intelligence (AI) plays a crucial role in detecting and diagnosing brain tumors, primarily utilizing medical imaging techniques such as...

Full description

Saved in:
Bibliographic Details
Published in2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0 pp. 1 - 8
Main Authors Karthikeyan, S., Lakshmanan, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.06.2024
Subjects
Online AccessGet full text
DOI10.1109/OTCON60325.2024.10688248

Cover

Abstract The existence of a brain tumor indicates an unusual growth of cells in the brain, manifesting as either benign (non-cancerous) or malignant (cancerous). Artificial Intelligence (AI) plays a crucial role in detecting and diagnosing brain tumors, primarily utilizing medical imaging techniques such as Magnetic Resonance Imaging (MRI). This initiative aims to employ Roboflow for data annotation and model training, utilizing the YOLOv8 algorithm to precisely handle the detection of brain tumors in MRI scans through image segmentation. The dataset utilized in this project encompasses annotated MRI scans illustrating tumor regions, meticulously prepared and enhanced through the application of Roboflow. YOLOv8, renowned for its expeditious and accurate object detection capabilities, is implemented and fine-tuned utilizing the annotated dataset. Model evaluation incorporates metrics such as Mean Average Precision (MAP), Recall, and Precision. Although YOLOv8 is inherently designed for object detection, this study explores adaptations for image segmentation, treating tumors as distinct classes. The iterative refinement process encompasses fine-tuning and optimization to elevate model performance and ensure robust generalization to novel data. The focus is on the advancement of MRI-based brain tumor detection through the utilization of cutting-edge deep learning techniques. This study highlights the potential of customizing YOLOv8 for the precise task of detecting brain tumors in MRI scans, establishing a foundation for future progress in the field of medical imaging.
AbstractList The existence of a brain tumor indicates an unusual growth of cells in the brain, manifesting as either benign (non-cancerous) or malignant (cancerous). Artificial Intelligence (AI) plays a crucial role in detecting and diagnosing brain tumors, primarily utilizing medical imaging techniques such as Magnetic Resonance Imaging (MRI). This initiative aims to employ Roboflow for data annotation and model training, utilizing the YOLOv8 algorithm to precisely handle the detection of brain tumors in MRI scans through image segmentation. The dataset utilized in this project encompasses annotated MRI scans illustrating tumor regions, meticulously prepared and enhanced through the application of Roboflow. YOLOv8, renowned for its expeditious and accurate object detection capabilities, is implemented and fine-tuned utilizing the annotated dataset. Model evaluation incorporates metrics such as Mean Average Precision (MAP), Recall, and Precision. Although YOLOv8 is inherently designed for object detection, this study explores adaptations for image segmentation, treating tumors as distinct classes. The iterative refinement process encompasses fine-tuning and optimization to elevate model performance and ensure robust generalization to novel data. The focus is on the advancement of MRI-based brain tumor detection through the utilization of cutting-edge deep learning techniques. This study highlights the potential of customizing YOLOv8 for the precise task of detecting brain tumors in MRI scans, establishing a foundation for future progress in the field of medical imaging.
Author Lakshmanan, S.
Karthikeyan, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Karthikeyan
  fullname: Karthikeyan, S.
  email: karthik19302@gmail.com
  organization: Hindustan Institute of Technology &Science,Department. of Computer Applications,Chennai,Tamilnadu,India
– sequence: 2
  givenname: S.
  surname: Lakshmanan
  fullname: Lakshmanan, S.
  email: slaxmancs@gmail.com
  organization: Hindustan Institute of Technology &Science,Department. of Computer Applications,Chennai,Tamilnadu,India
BookMark eNo1j8tKxDAYhSPoQsd5Axd5gdY_1zbLWm_F0YLW9ZAmf2tgmkqmCr69g5fV4fDB4Ttn5DjOEQmhDHLGwFy2Xd0-aRBc5Ry4zBnosuSyPCJrU5hSKBCFKEpxSh6ayY5IX3CcMC52CXOkw5zo43NDr5INkXYf06Ff44Luh77uQxxp5T9tdEirhtrdOKewvE3n5GSwuz2u_3JFutubrr7PNu1dU1ebLBi2ZOgKLb326FEr6ZQbOGfGA0oE1xcauTZeKjMYJ62QDsEe5HsJvVIejBYrcvE7GxBx-57CZNPX9v-i-Aa-mUuc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/OTCON60325.2024.10688248
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350373783
EndPage 8
ExternalDocumentID 10688248
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-ec764d6dede654c5cf2219d0e4e0cb76e269d459f9c4a34ce0a688b40b55d0963
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:48 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-ec764d6dede654c5cf2219d0e4e0cb76e269d459f9c4a34ce0a688b40b55d0963
PageCount 8
ParticipantIDs ieee_primary_10688248
PublicationCentury 2000
PublicationDate 2024-June-5
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-5
  day: 05
PublicationDecade 2020
PublicationTitle 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0
PublicationTitleAbbrev OTCON
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.875375
Snippet The existence of a brain tumor indicates an unusual growth of cells in the brain, manifesting as either benign (non-cancerous) or malignant (cancerous)....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain modeling
Data models
Deep learning
Image segmentation
Magnetic resonance imaging
MRI
Object detection
Training
YOLOv8
Title Image Segmentation for MRI Brain Tumor Detection Using Advance AI algorithm
URI https://ieeexplore.ieee.org/document/10688248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVJ36Tg9fWrH1Jm-Ocjk3ZJlpht5Emb3NoOxntxb_eNF0VBcFbEgIJL-R9JL_fe4Rc6jlwk1b3O6iSaoep8WSkuYd6HgiusKMdy3U0FoNnuJvy6Yas7rgwiOjAZ-hXTfeXb1a6rJ7K7A0X1iGEeJtsR7GoyVoNOofJq0nSm4wFCwNu474A_Gb6j8Ipzm70d8m4WbGGi7z6ZZH6-uNXMsZ_b2mPtL8pevThy_jsky3MD8j9MLPqgT7hIttQinJqnVI6ehzS66oWBE3KzPZvsHAIrJw6xADt1kAA2h1S9bZYrZfFS9YmSf826Q28TbUEbyk7hRVuJMAIgwYFB82trK0yMgwBmU4jgYGQBricSw0qBI1M2Z2nwFLOjY1jwkPSylc5HhGqwwBBMcBYS-tfCSkRBHRixYxksZLHpF0JYvZe58OYNTI4-WP8lOxU5-EAVvyMtIp1iefWlBfphTvCT8VNnuA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXjtzNqXrDnO6Vjdl2iF3UabvM2h7WS0F_9603RVFARvSSAkvJD3kfx-7xFypWbAdVzcb7dIqu3F2pEtxR1UM1fwCJvKslyHI9F7hvsJn6zJ6pYLg4gWfIaNomn_8vVS5cVTmbnhwjiE4G-SLQ4AvKRrVfgcJq_HYWc8EsxzuYn8XGhUE36UTrGWo7tLRtWaJWDktZFncUN9_ErH-O9N7ZH6N0mPPnyZn32ygekB6QeJURD0CefJmlSUUuOW0uFjQG-KahA0zBPTv8XMYrBSajEDtF1CAWg7oNHbfLlaZC9JnYTdu7DTc9b1EpyFbGZGvC0BWmjUKDgobqRt1JFmCMhU3BLoCqmBy5lUEHmgkEVm5zGwmHNtIhnvkNTSZYpHhCrPRYgYoK-k8bCElAgCmn7EtGR-JI9JvRDE9L3MiDGtZHDyx_gl2e6Fw8F0EIz6p2SnOBsLt-JnpJatcjw3hj2LL-xxfgJI6qIt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+OPJU+International+Technology+Conference+%28OTCON%29+on+Smart+Computing+for+Innovation+and+Advancement+in+Industry+4.0&rft.atitle=Image+Segmentation+for+MRI+Brain+Tumor+Detection+Using+Advance+AI+algorithm&rft.au=Karthikeyan%2C+S.&rft.au=Lakshmanan%2C+S.&rft.date=2024-06-05&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FOTCON60325.2024.10688248&rft.externalDocID=10688248