An Adaptive Online Few-shot Network Intrusion Detection System Based on Meta-Learning

Previous deep learning-based Network Intrusion Detection Systems (NIDS) require a sufficient number of labeled samples to train deep neural network models. However, in certain scenarios of the Internet of Things (IoT), such as zero-day attacks, abnormal data is scarce and cannot meet the training co...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Cloud and Big Data pp. 159 - 164
Main Authors Ding, Shiru, Wang, Zhen, Lu, Yifei
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.11.2024
Subjects
Online AccessGet full text
ISSN2573-301X
DOI10.1109/CBD65573.2024.00038

Cover

Abstract Previous deep learning-based Network Intrusion Detection Systems (NIDS) require a sufficient number of labeled samples to train deep neural network models. However, in certain scenarios of the Internet of Things (IoT), such as zero-day attacks, abnormal data is scarce and cannot meet the training conditions for neural network models. Thus, there is a need for a NIDS capable of few-shot learning. Additionally, previous online network intrusion detection systems did not comprehensively consider the significant impact of data feature drift and catastrophic forgetting on the performance of online models. In order to solve these two problems, we designed an adaptive online few-shot network intrusion detection system based on meta-learning. We evaluated the proposed system using the public datasets CIC-IDS2017, and the results show that our system can effectively handle the challenge of small samples while continuously adapting to new data with minimal catastrophic forgetting.
AbstractList Previous deep learning-based Network Intrusion Detection Systems (NIDS) require a sufficient number of labeled samples to train deep neural network models. However, in certain scenarios of the Internet of Things (IoT), such as zero-day attacks, abnormal data is scarce and cannot meet the training conditions for neural network models. Thus, there is a need for a NIDS capable of few-shot learning. Additionally, previous online network intrusion detection systems did not comprehensively consider the significant impact of data feature drift and catastrophic forgetting on the performance of online models. In order to solve these two problems, we designed an adaptive online few-shot network intrusion detection system based on meta-learning. We evaluated the proposed system using the public datasets CIC-IDS2017, and the results show that our system can effectively handle the challenge of small samples while continuously adapting to new data with minimal catastrophic forgetting.
Author Lu, Yifei
Ding, Shiru
Wang, Zhen
Author_xml – sequence: 1
  givenname: Shiru
  surname: Ding
  fullname: Ding, Shiru
  organization: School of Electrical and Automation Engineering, Nanjing Normal University,China
– sequence: 2
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology,China
– sequence: 3
  givenname: Yifei
  surname: Lu
  fullname: Lu, Yifei
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology,China
BookMark eNotjM1OAjEURqvRRESeQBd9gcG2t79LQFESlIWYuCOdmYtWoUOmVcLbO0RX3_mSk3NJzmITkZBrzoacM3c7Gd9ppQwMBRNyyBgDe0IGzjgLwFWnGHlKeqIzCmD87YIMUvo8atwYBdAjr6NIR7Xf5fCDdBE3ISKd4r5IH02mz5j3TftFZzG33yk0kd5hxiof6eWQMm7p2CesafefMPtijr6NIb5fkfO13yQc_G-fLKf3y8ljMV88zCajeREczwVqUVdQO4RSl9p4K1hVd7Tm2hvvBa8Ud8yXRjkttVRrXlvhBJNSsxKkhD65-csGRFzt2rD17WHFmVXWgoJf3zZSpA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CBD65573.2024.00038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331511074
EISSN 2573-301X
EndPage 164
ExternalDocumentID 10858835
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-e62dc3d9e3b6b67a820cd6b6f16a7aa21c5190ab75964645f1d829204460b3443
IEDL.DBID RIE
IngestDate Wed Aug 27 01:55:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-e62dc3d9e3b6b67a820cd6b6f16a7aa21c5190ab75964645f1d829204460b3443
PageCount 6
ParticipantIDs ieee_primary_10858835
PublicationCentury 2000
PublicationDate 2024-Nov.-28
PublicationDateYYYYMMDD 2024-11-28
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-28
  day: 28
PublicationDecade 2020
PublicationTitle International Conference on Advanced Cloud and Big Data
PublicationTitleAbbrev CBD
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177533
Score 1.8937109
Snippet Previous deep learning-based Network Intrusion Detection Systems (NIDS) require a sufficient number of labeled samples to train deep neural network models....
SourceID ieee
SourceType Publisher
StartPage 159
SubjectTerms Accuracy
Adaptation models
Adaptive systems
Catastrophic forgetting
data feature drift
Data models
Feature extraction
Few-shot learning
Internet of Things
meta-learning
Metalearning
Network intrusion detection
Network intrusion detection system
Prevention and mitigation
Training
Title An Adaptive Online Few-shot Network Intrusion Detection System Based on Meta-Learning
URI https://ieeexplore.ieee.org/document/10858835
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTj2lS0p3dOhViWzLknXM0pAWEnpIILegtS0FJ1CHQr--Iy9pKRR6k32xpcF-M9J7bxC6U1liuGKKUKsFYdIYImPFifXcpkwLqkUQOM_mfLpkj6t0VYvVSy2Mc64kn7leGJZn-XZjdmGrrB-Y8hmkDC3UEhmvxFr7DRUAQki9k9pZKKKyPxqOeZqKBKrAOHhk0yBC-dFDpYSQSQfNm4dXzJG33q7QPfP5y5fx3293hLrfaj38tMehY3Tg8hPUado14PrrPUXLQY4HVm3DDw5XFqN44j7I-8umwPOKDo4f8qDCgGDhsStKmlaOK1dzPATAsxiuZ65QpDZmfe6ixeR-MZqSuqsCeZVRQRyPrUmsdInmmgsFGYCxMPIRV0KpODKQ01GlRSp5OPX0kc1CRysoG6lOGEvOUDvf5O4c4UjDzLw31FDLUgellleSMi8jE0NhGV-gblil9bbyzVg3C3T5x_0rdBgiFZR-cXaN2jBfdwOQX-jbMtRfazyriw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHOBUliJ2fODq1klsJz52oWqhrTi0Um-VtwBCSiuRComvZ5ykBSEhcXNySexRMm_s994gdKeSyAjFFKFWx4RJY4gMlSA2FZYzHVMde4HzeCIGM_Yw5_NKrF5oYZxzBfnMNf2wOMu3S7P2W2Utz5RPADLsoj3OGOOlXGu7pQKpEMB3VHkLBVS2up2e4DyOoA4MvUs29TKUH11UiiTSr6PJ5vEld-Stuc5103z-cmb89_sdosa3Xg8_bTPREdpx2TGqbxo24Or7PUGzdobbVq38Lw6XJqO47z7I-8syx5OSEI6HmddhQLhwz-UFUSvDpa857kDKsxiuxy5XpLJmfW6gaf9-2h2Qqq8CeZVBTpwIrYmsdJEWWsQKMICxMEoDoWKlwsAAqqNKx1wKf-6ZBjbxPa2gcKQ6Yiw6RbVsmbkzhAMNM0tTQw21jDsotlIlKUtlYEIoLcNz1PCrtFiVzhmLzQJd_HH_Fu0PpuPRYjScPF6iAx81r_sLkytUg7m7awAAub4pwv4FlxOu2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Cloud+and+Big+Data&rft.atitle=An+Adaptive+Online+Few-shot+Network+Intrusion+Detection+System+Based+on+Meta-Learning&rft.au=Ding%2C+Shiru&rft.au=Wang%2C+Zhen&rft.au=Lu%2C+Yifei&rft.date=2024-11-28&rft.pub=IEEE&rft.eissn=2573-301X&rft.spage=159&rft.epage=164&rft_id=info:doi/10.1109%2FCBD65573.2024.00038&rft.externalDocID=10858835