Towards Effective Next POI Prediction: Spatial and Semantic Augmentation with Remote Sensing Data

The next point-of-interest (POI) prediction is a significant task in location-based services, yet its complexity arises from the consolidation of spatial and semantic intent. This fusion is subject to the influences of historical preferences, prevailing location, and environmental factors, thereby p...

Full description

Saved in:
Bibliographic Details
Published inData engineering pp. 5061 - 5074
Main Authors Jiang, Nan, Yuan, Haitao, Si, Jianing, Chen, Minxiao, Wang, Shangguang
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.05.2024
Subjects
Online AccessGet full text
ISSN2375-026X
DOI10.1109/ICDE60146.2024.00104

Cover

Abstract The next point-of-interest (POI) prediction is a significant task in location-based services, yet its complexity arises from the consolidation of spatial and semantic intent. This fusion is subject to the influences of historical preferences, prevailing location, and environmental factors, thereby posing significant challenges. In addition, the uneven POI distribution further complicates the next POI prediction procedure. To address these challenges, we enrich input features and propose an effective deep-learning method within a two-step prediction framework. Our method first incorporates remote sensing data, capturing pivotal environmental context to enhance input features regarding both location and semantics. Subsequently, we employ a region quad-tree structure to integrate urban remote sensing, road network, and POI distribution spaces, aiming to devise a more coherent graph representation method for urban spatial. Leveraging this method, we construct the QR-P graph for the user's historical trajectories to encapsulate historical travel knowledge, thereby augmenting input features with comprehensive spatial and semantic insights. We devise distinct embedding modules to encode these features and employ an attention mechanism to fuse diverse encodings. In the two-step prediction procedure, we initially identify potential spatial zones by predicting user-preferred tiles, followed by pinpointing specific POls of a designated type within the projected tiles. Empirical findings from four real-world location-based social network datasets underscore the remarkable superiority of our proposed approach over competitive baseline methods.
AbstractList The next point-of-interest (POI) prediction is a significant task in location-based services, yet its complexity arises from the consolidation of spatial and semantic intent. This fusion is subject to the influences of historical preferences, prevailing location, and environmental factors, thereby posing significant challenges. In addition, the uneven POI distribution further complicates the next POI prediction procedure. To address these challenges, we enrich input features and propose an effective deep-learning method within a two-step prediction framework. Our method first incorporates remote sensing data, capturing pivotal environmental context to enhance input features regarding both location and semantics. Subsequently, we employ a region quad-tree structure to integrate urban remote sensing, road network, and POI distribution spaces, aiming to devise a more coherent graph representation method for urban spatial. Leveraging this method, we construct the QR-P graph for the user's historical trajectories to encapsulate historical travel knowledge, thereby augmenting input features with comprehensive spatial and semantic insights. We devise distinct embedding modules to encode these features and employ an attention mechanism to fuse diverse encodings. In the two-step prediction procedure, we initially identify potential spatial zones by predicting user-preferred tiles, followed by pinpointing specific POls of a designated type within the projected tiles. Empirical findings from four real-world location-based social network datasets underscore the remarkable superiority of our proposed approach over competitive baseline methods.
Author Yuan, Haitao
Wang, Shangguang
Chen, Minxiao
Jiang, Nan
Si, Jianing
Author_xml – sequence: 1
  givenname: Nan
  surname: Jiang
  fullname: Jiang, Nan
  email: jn_bupt@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,China
– sequence: 2
  givenname: Haitao
  surname: Yuan
  fullname: Yuan, Haitao
  email: haitao.yuan@ntu.edu.sg
  organization: Nanyang Technological University,Singapore
– sequence: 3
  givenname: Jianing
  surname: Si
  fullname: Si, Jianing
  email: sijianing@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,China
– sequence: 4
  givenname: Minxiao
  surname: Chen
  fullname: Chen, Minxiao
  email: chenminxiao@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,China
– sequence: 5
  givenname: Shangguang
  surname: Wang
  fullname: Wang, Shangguang
  email: sgwang@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications,China
BookMark eNotjMFOAjEURavRREX-gEV_YPC1nU5bdwRQSYgQYeGOPGZesYbpkJkq-vdi9G5OcnJyb9hFbCIxNhAwFALc3Ww8mRYg8mIoQeZDAAH5Ges746zSoIQRWp6za6mMzkAWr1es33XvcJrLhdBwzXDdHLGtOj71nsoUPok_01fiy8WML1uqwsk18Z6vDpgC7jnGiq-oxphCyUcfu5piwt-EH0N64y9UN4lORexC3PEJJrxllx73HfX_2WPrh-l6_JTNF4-z8WieBSdShoUrja-0tAoIkbRAYbeVlB4qqopS5d7KbW6sL6GU2m6tytFZ64XF0hqremzwdxuIaHNoQ43t90aAdqZwRv0A-QhYUw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDE60146.2024.00104
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350317152
EISSN 2375-026X
EndPage 5074
ExternalDocumentID 10597697
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62032003,61921003
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i91t-a69c7fd52830eaae51a18bd22f0ded6c34f82b478fc0c258b834a988f18ac8783
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-a69c7fd52830eaae51a18bd22f0ded6c34f82b478fc0c258b834a988f18ac8783
PageCount 14
ParticipantIDs ieee_primary_10597697
PublicationCentury 2000
PublicationDate 2024-May-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-13
  day: 13
PublicationDecade 2020
PublicationTitle Data engineering
PublicationTitleAbbrev ICDE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941150
Score 2.298608
Snippet The next point-of-interest (POI) prediction is a significant task in location-based services, yet its complexity arises from the consolidation of spatial and...
SourceID ieee
SourceType Publisher
StartPage 5061
SubjectTerms Point-of-Interest
Quad-tree
Recommendation
Remote Sensing
Roads
Semantics
Social networking (online)
Space exploration
Spatial & Semantic
Spatial databases
Trajectory
Urban areas
Title Towards Effective Next POI Prediction: Spatial and Semantic Augmentation with Remote Sensing Data
URI https://ieeexplore.ieee.org/document/10597697
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT57qUnFnDl7TZrJMZrxJF6xgLVqhtzKrFGkqml789b6XpFUEwVsI2XhvMm_9vkfIFbcuisD0BT5jaQArJAmU1DJIbaStwyikbPm_H_Pb5-Ruls5qsHqJhXHOlc1nroOHZS3frswaU2Vd9AUyLrMGaWSCV2CtbUIF4hT0bmp4HAtld9TrDziSo0AYGCFJNsNxbD-GqJQ2ZNgi483bq9aR18660B3z-YuY8d-ft0fa33A9Otkaon2y4_ID0trMa6D173tI1LTskf2gFWUx7HN0DHsznTyM4H6s2KCWrimOKYZlSVVu6ZNbguwXht6sX5Y1TimnmL2ljw7U7OCKHPMNtK8K1SbT4WDauw3qEQvBQrIiUFyazFskeAmdUi5liglto8iH1llu4sSLSCeZ8CY0USq0iBMlhfBMKCMyER-RZr7K3TGhnoMjJ1MjLfdJamLtQc3wCGFjcJpUckLaKLH5W0WiMd8I6_SP82dkF7WGhXoWn5Nm8b52F2D_C31Z6v0L7aKvow
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHOA0HkO8yYFrtz6SNuGG9tAGW5mgSNymNA80oXUI2gu_nrjtBkJC4lZVfcl2Y8f29xmhq1Bp37euzzGRRx1rIcQRPOUOVX6qNOxCypb_SRwOn8jtM32uweolFkZrXTaf6TYclrV8tZQFpMo6EAtEIY820RYlhNAKrrVOqdidCsQ3NUDOc3ln1O31Q6BHsRtBH2iyPRjI9mOMSulFBk0Ur95fNY-8tos8bcvPX9SM__7AXdT6Buzh6doV7aENne2j5mpiA65_4AMkkrJL9gNXpMV2pcOxXZ3x9H5k74eaDejpGsOgYmuYWGQKP-qFlf5c4pviZVEjlTIM-Vv8oK2itb0ig4wD7olctFAy6CfdoVMPWXDm3MsdEXIZGQUUL64WQlNPeCxVvm9cpVUoA2KYn5KIGelKn7KUBURwxozHhGQRCw5RI1tm-ghhE9pQjlPJVWgIlUFqrKLtI5gKbNgkyDFqgcRmbxWNxmwlrJM_zl-i7WEyGc_Go_juFO2ABqFs7wVnqJG_F_rcRgN5elHawBdNnbLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=Towards+Effective+Next+POI+Prediction%3A+Spatial+and+Semantic+Augmentation+with+Remote+Sensing+Data&rft.au=Jiang%2C+Nan&rft.au=Yuan%2C+Haitao&rft.au=Si%2C+Jianing&rft.au=Chen%2C+Minxiao&rft.date=2024-05-13&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=5061&rft.epage=5074&rft_id=info:doi/10.1109%2FICDE60146.2024.00104&rft.externalDocID=10597697