Transforming Diabetes Care with Predictive Machine Learning Techniques

Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood sugar levels, affecting millions of individuals worldwide. Early detection and management of diabetes are crucial in preventing complications and improving patient outcomes. In recent years, machine learning techniques...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) pp. 1 - 6
Main Authors Mariammal, G., Jasmine, R. Megiba, Rama Lingham N, Siva, E, Poongothai, Prema, S., S, Sai Charan
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2024
Subjects
Online AccessGet full text
DOI10.1109/ICPECTS62210.2024.10780095

Cover

Abstract Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood sugar levels, affecting millions of individuals worldwide. Early detection and management of diabetes are crucial in preventing complications and improving patient outcomes. In recent years, machine learning techniques have shown promise in predicting diabetes risk based on various factors such as demographic information, medical history, and lifestyle habits. Verticaling through a not-too-well designed case study - This paper is an extensive examination and comparison of different ML techniques for diabetes prediction. It goes through the methodologies, datasets, features, performance metrics and challenges of current models that are based on machine learning. In addition, understand strengths and weaknesses of all the algorithms- SVM, Decision Trees, Random Forests, Logistic regression etc. Here the logistic regression algorithm is used to develop a predictive model for diabetes based on demographic and clinical features. After preprocessing the data, including handling missing values and scaling numerical features, trained a logistic regression model using a portion of the dataset. The model achieved a high accuracy of 90% on the testing set, indicating its effectiveness in distinguishing be- tween diabetic and non-diabetic individuals.
AbstractList Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood sugar levels, affecting millions of individuals worldwide. Early detection and management of diabetes are crucial in preventing complications and improving patient outcomes. In recent years, machine learning techniques have shown promise in predicting diabetes risk based on various factors such as demographic information, medical history, and lifestyle habits. Verticaling through a not-too-well designed case study - This paper is an extensive examination and comparison of different ML techniques for diabetes prediction. It goes through the methodologies, datasets, features, performance metrics and challenges of current models that are based on machine learning. In addition, understand strengths and weaknesses of all the algorithms- SVM, Decision Trees, Random Forests, Logistic regression etc. Here the logistic regression algorithm is used to develop a predictive model for diabetes based on demographic and clinical features. After preprocessing the data, including handling missing values and scaling numerical features, trained a logistic regression model using a portion of the dataset. The model achieved a high accuracy of 90% on the testing set, indicating its effectiveness in distinguishing be- tween diabetic and non-diabetic individuals.
Author S, Sai Charan
Jasmine, R. Megiba
Rama Lingham N, Siva
Mariammal, G.
E, Poongothai
Prema, S.
Author_xml – sequence: 1
  givenname: G.
  surname: Mariammal
  fullname: Mariammal, G.
  email: suba.g1212@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Computer Science and Engineering,Chennai,India
– sequence: 2
  givenname: R. Megiba
  surname: Jasmine
  fullname: Jasmine, R. Megiba
  email: megiba.jaz88@gmail.com
  organization: Ponjesly College of Engineering,Computer Science and Engineering,Nagercoil,India
– sequence: 3
  givenname: Siva
  surname: Rama Lingham N
  fullname: Rama Lingham N, Siva
  email: shivacseresearch@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,India
– sequence: 4
  givenname: Poongothai
  surname: E
  fullname: E, Poongothai
  email: poongothai.rp@gmail.com
  organization: SRM Institute of Science and Technology,Department of Computational Intelligence,Chennai,India
– sequence: 5
  givenname: S.
  surname: Prema
  fullname: Prema, S.
  email: premas89@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,India
– sequence: 6
  givenname: Sai Charan
  surname: S
  fullname: S, Sai Charan
  email: saaisunkara@gmail.com
  organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,India
BookMark eNo1j01LAzEURSPoQmv_gYvgvvXlq0mWMra2MGLB2ZeXzBsnYFPNjIr_3oq6unA5XM69YKf5kImxawFzIcDfbKrtsmqeFlIeGwlSzwVYB-DNCZt6651SwoBz2pyzVVMwD92h7FN-5ncJA4008AoL8c809nxbqE1xTB_EHzD2KROvCUv-wRuKfU5v7zRcsrMOXwaa_uWENatlU61n9eP9prqtZ8mLceaNBGuEC62yRBZDkFGDjjq0Xi2ikdYLkB1ocqi8DA69hla1BPpojUFN2NXvbCKi3WtJeyxfu_936hv_sEqM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPECTS62210.2024.10780095
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331508845
EndPage 6
ExternalDocumentID 10780095
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-95207518bd37ee7abb2c404c4bd936c5279102f04e8a392b8a940d3de04798ab3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-95207518bd37ee7abb2c404c4bd936c5279102f04e8a392b8a940d3de04798ab3
PageCount 6
ParticipantIDs ieee_primary_10780095
PublicationCentury 2000
PublicationDate 2024-Oct.-8
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS)
PublicationTitleAbbrev ICPECTS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8978142
Snippet Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood sugar levels, affecting millions of individuals worldwide. Early detection...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Decision Tree
Diabetes
Logistic regression
Machine learning algorithms
Neural Networks
Numerical models
Prediction algorithms
Random Forest
Random forests
Regression tree analysis
Support Vector Machine
Support vector machines
Testing
Vectors
Title Transforming Diabetes Care with Predictive Machine Learning Techniques
URI https://ieeexplore.ieee.org/document/10780095
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esSTbdJOfSokJLwRV6K3lMRYRW7PbirzezD0VB8BYCeZPMJPN9Xwi54at07XFGMGGCZio4wxwPjgmJkO_gQSvkO09nxd2TelgMFy1ZvebCAEANPoMMk3UsP27CDp_K0g7XBn2CHulpbRuyViskKri9vR_Nx6PysZASAc7J-GRdgR9fp9SWY3JAZl2bDWDkNdtVPgsfv-QY_92pQzL4JunR-Zf5OSJ7sD4mk7JzRFMebeEuW4osI4pPrqkERmbwjKPTGkcJtJVYfaZlp-e6HZByMi5Hd6z9KoG9WFExO5Qc4yc-5hpAO-9lUFwF5aPNizCUOnkFcsUVGJccIm-cVTzmEVBg3jifn5D-erOGU0JtHmIUEpRNd79gc58XwlmvRaolKunOyADnYPnWiGEsu-Gf_5F_QfZxKRrY3CXpV-87uEp2vPLX9fp9AuFnnok
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxmTbLZTXIuLa22peAKvZU8piJCFbu9-OtN9qEoCN5CIJtkQzIzme_7gtANXYawxyhGmHKSCGcUMdQZwniEfDsLUkS-82SaDx_F3TybN2T1igsDABX4DJJYrHL5_tVt4lVZ2OFSRZ9gG-1kIayQNV2rkRJlVN-OerN-r3jIOY8Q52B-krbJj8dTKtsx2EfTttcaMvKSbEqbuI9fgoz_HtYB6n7T9PDsywAdoi1YHaFB0bqioQ43gJc1jjwjHC9dQ4uYm4mnHJ5USErAjcjqEy5aRdd1FxWDftEbkuaxBPKsWUl0xmnMoFifSgBprOVOUOGE9TrNXcZl8Av4kgpQJrhEVhktqE89RIl5ZWx6jDqr1xWcIKxT5z3jIHSI_pxObZozo61k4StecHOKuvEfLN5qOYxFO_2zP-qv0e6wmIwX49H0_hztxWWpQXQXqFO-b-AyWPXSXlVr-QloJKHa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Power%2C+Energy%2C+Control+and+Transmission+Systems+%28ICPECTS%29&rft.atitle=Transforming+Diabetes+Care+with+Predictive+Machine+Learning+Techniques&rft.au=Mariammal%2C+G.&rft.au=Jasmine%2C+R.+Megiba&rft.au=Rama+Lingham+N%2C+Siva&rft.au=E%2C+Poongothai&rft.date=2024-10-08&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPECTS62210.2024.10780095&rft.externalDocID=10780095