Remote Monitoring and Diagnosis Technology for Electrical Equipment Based on the Internet of Things
In order to improve the accuracy and real-time performance of remote monitoring and diagnosis of electrical equipment, a technical framework based on the Internet of Things is introduced into the power industry. The system uses sensor networks, cloud computing and artificial intelligence technology...
Saved in:
Published in | IEEE International Conference on Power, Intelligent Computing and Systems (Online) pp. 191 - 194 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2834-8567 |
DOI | 10.1109/ICPICS62053.2024.10796589 |
Cover
Abstract | In order to improve the accuracy and real-time performance of remote monitoring and diagnosis of electrical equipment, a technical framework based on the Internet of Things is introduced into the power industry. The system uses sensor networks, cloud computing and artificial intelligence technology to realize real-time monitoring and data transmission of equipment. Through data analysis and abnormal diagnosis models, it can identify potential faults and issue timely warnings. The results show that the system has high accuracy and stability in monitoring and diagnosis, and can effectively reduce the risk of failure through an early warning mechanism. |
---|---|
AbstractList | In order to improve the accuracy and real-time performance of remote monitoring and diagnosis of electrical equipment, a technical framework based on the Internet of Things is introduced into the power industry. The system uses sensor networks, cloud computing and artificial intelligence technology to realize real-time monitoring and data transmission of equipment. Through data analysis and abnormal diagnosis models, it can identify potential faults and issue timely warnings. The results show that the system has high accuracy and stability in monitoring and diagnosis, and can effectively reduce the risk of failure through an early warning mechanism. |
Author | Xuyang, Zhang Ruitong, Yuan Chu, Wang Wenduo, Yu Hongzhang, Wu Zhenqi, Zhao |
Author_xml | – sequence: 1 givenname: Zhao surname: Zhenqi fullname: Zhenqi, Zhao email: ykdysgcc@163.com organization: State Grid Yingkou Power Supply Company,Yingkou,China – sequence: 2 givenname: Wu surname: Hongzhang fullname: Hongzhang, Wu email: Wu_Hongzhang@outlook.com organization: State Grid Yingkou Power Supply Company,Yingkou,China – sequence: 3 givenname: Yu surname: Wenduo fullname: Wenduo, Yu email: Yu_Wenduo@outlook.com organization: State Grid Yingkou Power Supply Company,Yingkou,China – sequence: 4 givenname: Zhang surname: Xuyang fullname: Xuyang, Zhang email: Zhang_Xuyang1@outlook.com organization: State Grid Yingkou Power Supply Company,Yingkou,China – sequence: 5 givenname: Yuan surname: Ruitong fullname: Ruitong, Yuan email: Yuan_Ruitong@outlook.com organization: State Grid Yingkou Power Supply Company,Yingkou,China – sequence: 6 givenname: Wang surname: Chu fullname: Chu, Wang email: Wang_Chu1@outlook.com organization: State Grid Yingkou Power Supply Company,Yingkou,China |
BookMark | eNo10LtOwzAYQGGDQAJK34DBPECKr7E9QigQqQgE2SvH-d0apXaJzdC3BwmYzvYN5wKdxBQBoWtKFpQSc9M2r23zXjMi-YIRJhaUKFNLbY7Q3CijuSRcCU7lMTpnmotKy1qdoXnOH4QQzihVWp8j9wa7VAA_pxhKmkLcYBsHfB_sJqYcMu7AbWMa0-aAfZrwcgRXpuDsiJefX2G_g1jwnc0w4BRx2QJuY4EpQsHJ4277A-ZLdOrtmGH-1xnqHpZd81StXh7b5nZVBUNLpcF7zZgTvmcOBCdcgwJlhRSS9Yb1glk2WEsp9KQeBOeqJ4Zr78Ap7iyfoatfNgDAej-FnZ0O6_8t_BvZXVsA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPICS62053.2024.10796589 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350374315 |
EISSN | 2834-8567 |
EndPage | 194 |
ExternalDocumentID | 10796589 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i91t-8eff822c4fb2ce43038e7e7a45452b92b42a2daa11eb06d4337b0938fcec73ca3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 01 06:01:57 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-8eff822c4fb2ce43038e7e7a45452b92b42a2daa11eb06d4337b0938fcec73ca3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10796589 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-26 |
PublicationDateYYYYMMDD | 2024-07-26 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Power, Intelligent Computing and Systems (Online) |
PublicationTitleAbbrev | ICPICS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211788 |
Score | 1.8824258 |
Snippet | In order to improve the accuracy and real-time performance of remote monitoring and diagnosis of electrical equipment, a technical framework based on the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 191 |
SubjectTerms | Accuracy Artificial intelligence Cloud computing Data analysis Electric potential electrical equipment fault warning Internet of Things monitoring and diagnosis Power industry Real-time systems Remote monitoring Stability analysis |
Title | Remote Monitoring and Diagnosis Technology for Electrical Equipment Based on the Internet of Things |
URI | https://ieeexplore.ieee.org/document/10796589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_ieBra5ukTfvq3NgEx9AJextJeoEhtH60L_71XtJ9oCD4FgqBI0f6u_vl7n6E3OBvMUEYMwFmF3kguEkDXTARxErYwsaRYl6m83GSjl7EwzyZr5rVfS8MAPjiMwjd0r_lF5VpHFWGN1y6WSV5h3SkzNtmrQ2hwjGVwXxul1yv5mjejvvTcf85ZWgNJoJMhOv9P5RUPJAM98lkbUJbP_IaNrUOzdev6Yz_tvGA9LY9e3S6QaNDsgPlETFPgK4A2t5cR-FRVRb0vq2vW37SLbNOMXqlAy-K4_xGB-_N0tcS0TsEuoJWJcVYkbYMItS0srTV_OyR2XAw64-ClaxCsMzjOsjAWowKjLCaGRAIYRlIkEo4tXGdMy2YYoVScQw6SgvBudRRzjNrwEhuFD8m3bIq4YRQpk2iTJJZcK95WijJLXpYCpUanenolPTcAS3e2sEZi_XZnP3x_ZzsOT856pSlF6RbfzRwiZhf6yvv62_ASKzx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX1SceK3EXxtXdO0aV-dG5tuY-iEvY0kvcAQWj_aF_96L-k-UBB8C30IR470d_fL3f0IucHfYoQwpj3MLlKPhzr2VMa4F0huMhO0JHMyncNR3HvhD9NoumhWd70wAOCKz8C3S_eWnxW6slQZ3nBhZ5Wkm2QrwrRC1O1aK0olxGQGM7ptcr2YpHnbb4_77eeYoT2YCjLuL3f4oaXioKS7R0ZLI-oKkle_KpWvv37NZ_y3lfukue7ao-MVHh2QDcgPiX4CdAbQ-u5aEo_KPKP3dYXd_JOuuXWK8SvtOFkc6znaea_mrpqI3iHUZbTIKUaLtOYQoaSFobXqZ5NMup1Ju-cthBW8eRqUXgLGYFyguVFMA0cQS0CAkNzqjauUKc4ky6QMAlCtOONhKFQrDROjQYtQy_CINPIih2NCmdKR1FFiwL7nKS5FaNDHgstYq0S1TkjTHtDsrR6dMVuezekf36_ITm8yHMwG_dHjGdm1PrNEKovPSaP8qOACI4BSXTq_fwMC0rBC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Power%2C+Intelligent+Computing+and+Systems+%28Online%29&rft.atitle=Remote+Monitoring+and+Diagnosis+Technology+for+Electrical+Equipment+Based+on+the+Internet+of+Things&rft.au=Zhenqi%2C+Zhao&rft.au=Hongzhang%2C+Wu&rft.au=Wenduo%2C+Yu&rft.au=Xuyang%2C+Zhang&rft.date=2024-07-26&rft.pub=IEEE&rft.eissn=2834-8567&rft.spage=191&rft.epage=194&rft_id=info:doi/10.1109%2FICPICS62053.2024.10796589&rft.externalDocID=10796589 |