Application of Convolutional Neural Network Algorithm for Analyzing Sentiments on the Kampus Merdeka Policy

Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Wireless and Telematics (Online) pp. 1 - 6
Main Authors Irfan, Mohamad, Riyadi, Theo Vectra, Atmadja, Aldy Rialdy, Fuadi, Rifqi Syamsul, Muin, Abdul
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.07.2024
Subjects
Online AccessGet full text
ISSN2769-8289
DOI10.1109/ICWT62080.2024.10674724

Cover

Abstract Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model implementation, and evaluation. The study utilizes preprocessing techniques, such as converting emoticons and emojis, text filtering, removing stopwords, stemming, word normalization, tokenization, and sequencing. The data for analysis is sourced from Twitter and YouTube, comprising 428 datasets. The accuracy, which measures the similarity between predicted and actual values, is 76%. Additional tests demonstrate that incorporating emoticon and emoji conversions in the text can increase sentiment analysis accuracy by 5%, resulting in 81%. These findings indicate the effectiveness of the Convolutional Neural Network algorithm employed in this research.
AbstractList Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model implementation, and evaluation. The study utilizes preprocessing techniques, such as converting emoticons and emojis, text filtering, removing stopwords, stemming, word normalization, tokenization, and sequencing. The data for analysis is sourced from Twitter and YouTube, comprising 428 datasets. The accuracy, which measures the similarity between predicted and actual values, is 76%. Additional tests demonstrate that incorporating emoticon and emoji conversions in the text can increase sentiment analysis accuracy by 5%, resulting in 81%. These findings indicate the effectiveness of the Convolutional Neural Network algorithm employed in this research.
Author Fuadi, Rifqi Syamsul
Irfan, Mohamad
Riyadi, Theo Vectra
Atmadja, Aldy Rialdy
Muin, Abdul
Author_xml – sequence: 1
  givenname: Mohamad
  surname: Irfan
  fullname: Irfan, Mohamad
  email: irfan.bahaf@uinsgd.ac.id
  organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia
– sequence: 2
  givenname: Theo Vectra
  surname: Riyadi
  fullname: Riyadi, Theo Vectra
  email: vectrar.theo@gmail.com
  organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia
– sequence: 3
  givenname: Aldy Rialdy
  surname: Atmadja
  fullname: Atmadja, Aldy Rialdy
  email: abdul.muin@uinbanten.ac.id
  organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia
– sequence: 4
  givenname: Rifqi Syamsul
  surname: Fuadi
  fullname: Fuadi, Rifqi Syamsul
  email: rifqi@uinsgd.ac.id
  organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia
– sequence: 5
  givenname: Abdul
  surname: Muin
  fullname: Muin, Abdul
  email: aldyrialdy@uinsgd.ac.id
  organization: UIN Sultan Maulana Hasanuddin,Banten,Indonesia
BookMark eNo1kNtKw0AYhFdRsNa-geC-QOoekv13L0PwUKwHsOBl2cZ_27VJNmxSpT698XQzHwPDDMwpOWpCg4RccDblnJnLWfGyUIJpNhVMpFPOFKQg0gMyMWC0zJgEYBkckpEAZRIttDkhk657Y4xJDgAaRmSbt23lS9v70NDgaBGa91Dtvq2t6APu4g_6jxC3NK_WIfp-U1MXIs2HxP7TN2v6jE3v60E6OrT0G6R3tm53Hb3H-IpbS5_CsLE_I8fOVh1O_jgmi-urRXGbzB9vZkU-T7zhfaKMSTPnpFOcGyeNRiXK1UAr3IpLw4RVylqVgkWJpWYrh5l2IiuxtJChHJPz31qPiMs2-trG_fL_HvkF22xd-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICWT62080.2024.10674724
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350377057
EISSN 2769-8289
EndPage 6
ExternalDocumentID 10674724
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-69945ff3f6119f398e62cb398a2fb13902a66aa647ae3ec80bfe58f25ceca75e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-69945ff3f6119f398e62cb398a2fb13902a66aa647ae3ec80bfe58f25ceca75e3
PageCount 6
ParticipantIDs ieee_primary_10674724
PublicationCentury 2000
PublicationDate 2024-July-4
PublicationDateYYYYMMDD 2024-07-04
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-4
  day: 04
PublicationDecade 2020
PublicationTitle International Conference on Wireless and Telematics (Online)
PublicationTitleAbbrev ICWT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177787
Score 2.2635684
Snippet Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Converting emoticons and emojis
Convolutional Neural Network
Data preprocessing
Filtering
Kampus Merdeka
Prediction algorithms
Sentiment analysis
Twitter
Video on demand
Wireless communication
Youtube
Title Application of Convolutional Neural Network Algorithm for Analyzing Sentiments on the Kampus Merdeka Policy
URI https://ieeexplore.ieee.org/document/10674724
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dtd7PZ7OZYiqUqLYIVeyvJZqKljy1166G_3kn6QkHwlBCSEDKBeX3zhZA7l3uzYEyQZlwGHGIdaJXaIASdhUbKnCkX0O_2ROeVPw6SwaZY3dfCAIAHn0HddX0u3xT50oXKGo7ujKeMV0glzcS6WGsXUEFFmOLr22C4olA2HlpvfcHQJEI3kPH6dvWPf1S8Gmkfkd72AGv0yLi-LHU9X_3iZvz3CY9JbV-xR593uuiEHMDslIyb--w0LSzFuV-bl6Ym1NFy-MbjwGlz8l4sRuXHlKIZSz1XyQq3oi8OTuTr4CjuguYifVLT-fKTdmFhYKzomlm4Rvrt-36rE2w-VwhGMioDISVPrI2tiCJpY5mBYLnGVjGr0SoMmRJCKcFTBTHkWagtoFRZkkOu0gTiM1KdFTM4JxQ9vtgal5_VFs2BUGV5EhnD0BMx2GUXpOYuajhf02cMt3d0-cf4FTl08vKYWH5NquViCTeo-Ut96yX-DfdEr6A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxuu5vNPnIsxdLaB4IVeyvJZqKlT-rWQ3-9k_SFguApYcmGkAnMN5lvvhDyYHNvBrT2kpQLj0OoPCUT4_mgUl8LkTFpL_Tbnbj-yp96UW9drO5qYQDAkc-gZLsul6-n2cJelZWt3BlPGN8nBxHnPFqVa22vVNAVJnj-1iyuwBflRvWtGzMERRgIMl7a_P_jJRXnSGrHpLNZwoo_MiwtclXKlr_UGf-9xhNS3NXs0eetNzolezA5I8PKLj9Np4bi2K_1WZMjaoU5XOOY4LQyep_OB_nHmCKQpU6tZIlT0RdLKHKVcBRnQcBIm3I8W3zSNsw1DCVdaQsXSbf22K3WvfXzCt5ABLkXC8EjY0ITB4EwoUghZpnCVjKjEBf6TMaxlDFPJISQpb4ygHZlUQaZTCIIz0lhMp3ABaEY84VG2wytMggIfJlmUaA1w1hEY5ddkqLdqP5sJaDR3-zR1R_f78lhvdtu9VuNTvOaHFnbOYYsvyGFfL6AW8QBubpz1v8GVouy7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Wireless+and+Telematics+%28Online%29&rft.atitle=Application+of+Convolutional+Neural+Network+Algorithm+for+Analyzing+Sentiments+on+the+Kampus+Merdeka+Policy&rft.au=Irfan%2C+Mohamad&rft.au=Riyadi%2C+Theo+Vectra&rft.au=Atmadja%2C+Aldy+Rialdy&rft.au=Fuadi%2C+Rifqi+Syamsul&rft.date=2024-07-04&rft.pub=IEEE&rft.eissn=2769-8289&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICWT62080.2024.10674724&rft.externalDocID=10674724