Application of Convolutional Neural Network Algorithm for Analyzing Sentiments on the Kampus Merdeka Policy
Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model...
        Saved in:
      
    
          | Published in | International Conference on Wireless and Telematics (Online) pp. 1 - 6 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        04.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2769-8289 | 
| DOI | 10.1109/ICWT62080.2024.10674724 | 
Cover
| Abstract | Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model implementation, and evaluation. The study utilizes preprocessing techniques, such as converting emoticons and emojis, text filtering, removing stopwords, stemming, word normalization, tokenization, and sequencing. The data for analysis is sourced from Twitter and YouTube, comprising 428 datasets. The accuracy, which measures the similarity between predicted and actual values, is 76%. Additional tests demonstrate that incorporating emoticon and emoji conversions in the text can increase sentiment analysis accuracy by 5%, resulting in 81%. These findings indicate the effectiveness of the Convolutional Neural Network algorithm employed in this research. | 
    
|---|---|
| AbstractList | Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard Process for Data Mining (CRISP-DM) method, encompassing stages such as business understanding, data understanding, data preprocessing, model implementation, and evaluation. The study utilizes preprocessing techniques, such as converting emoticons and emojis, text filtering, removing stopwords, stemming, word normalization, tokenization, and sequencing. The data for analysis is sourced from Twitter and YouTube, comprising 428 datasets. The accuracy, which measures the similarity between predicted and actual values, is 76%. Additional tests demonstrate that incorporating emoticon and emoji conversions in the text can increase sentiment analysis accuracy by 5%, resulting in 81%. These findings indicate the effectiveness of the Convolutional Neural Network algorithm employed in this research. | 
    
| Author | Fuadi, Rifqi Syamsul Irfan, Mohamad Riyadi, Theo Vectra Atmadja, Aldy Rialdy Muin, Abdul  | 
    
| Author_xml | – sequence: 1 givenname: Mohamad surname: Irfan fullname: Irfan, Mohamad email: irfan.bahaf@uinsgd.ac.id organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia – sequence: 2 givenname: Theo Vectra surname: Riyadi fullname: Riyadi, Theo Vectra email: vectrar.theo@gmail.com organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia – sequence: 3 givenname: Aldy Rialdy surname: Atmadja fullname: Atmadja, Aldy Rialdy email: abdul.muin@uinbanten.ac.id organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia – sequence: 4 givenname: Rifqi Syamsul surname: Fuadi fullname: Fuadi, Rifqi Syamsul email: rifqi@uinsgd.ac.id organization: UIN Sunan Gunung Djati,Department of Informatics,Bandung,Indonesia – sequence: 5 givenname: Abdul surname: Muin fullname: Muin, Abdul email: aldyrialdy@uinsgd.ac.id organization: UIN Sultan Maulana Hasanuddin,Banten,Indonesia  | 
    
| BookMark | eNo1kNtKw0AYhFdRsNa-geC-QOoekv13L0PwUKwHsOBl2cZ_27VJNmxSpT698XQzHwPDDMwpOWpCg4RccDblnJnLWfGyUIJpNhVMpFPOFKQg0gMyMWC0zJgEYBkckpEAZRIttDkhk657Y4xJDgAaRmSbt23lS9v70NDgaBGa91Dtvq2t6APu4g_6jxC3NK_WIfp-U1MXIs2HxP7TN2v6jE3v60E6OrT0G6R3tm53Hb3H-IpbS5_CsLE_I8fOVh1O_jgmi-urRXGbzB9vZkU-T7zhfaKMSTPnpFOcGyeNRiXK1UAr3IpLw4RVylqVgkWJpWYrh5l2IiuxtJChHJPz31qPiMs2-trG_fL_HvkF22xd-w | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICWT62080.2024.10674724 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9798350377057 | 
    
| EISSN | 2769-8289 | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 10674724 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i91t-69945ff3f6119f398e62cb398a2fb13902a66aa647ae3ec80bfe58f25ceca75e3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:00:29 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i91t-69945ff3f6119f398e62cb398a2fb13902a66aa647ae3ec80bfe58f25ceca75e3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_10674724 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-July-4 | 
    
| PublicationDateYYYYMMDD | 2024-07-04 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-4 day: 04  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International Conference on Wireless and Telematics (Online) | 
    
| PublicationTitleAbbrev | ICWT | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0003177787 | 
    
| Score | 2.2635684 | 
    
| Snippet | Sentiment analysis examines public opinions on the Kampus Merdeka policy by analyzing texts from various sources. The study follows the Cross Industry Standard... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Converting emoticons and emojis Convolutional Neural Network Data preprocessing Filtering Kampus Merdeka Prediction algorithms Sentiment analysis Video on demand Wireless communication Youtube  | 
    
| Title | Application of Convolutional Neural Network Algorithm for Analyzing Sentiments on the Kampus Merdeka Policy | 
    
| URI | https://ieeexplore.ieee.org/document/10674724 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dtd7PZ7OZYiqUqLYIVeyvJZqKljy1166G_3kn6QkHwlBCSEDKBeX3zhZA7l3uzYEyQZlwGHGIdaJXaIASdhUbKnCkX0O_2ROeVPw6SwaZY3dfCAIAHn0HddX0u3xT50oXKGo7ujKeMV0glzcS6WGsXUEFFmOLr22C4olA2HlpvfcHQJEI3kPH6dvWPf1S8Gmkfkd72AGv0yLi-LHU9X_3iZvz3CY9JbV-xR593uuiEHMDslIyb--w0LSzFuV-bl6Ym1NFy-MbjwGlz8l4sRuXHlKIZSz1XyQq3oi8OTuTr4CjuguYifVLT-fKTdmFhYKzomlm4Rvrt-36rE2w-VwhGMioDISVPrI2tiCJpY5mBYLnGVjGr0SoMmRJCKcFTBTHkWagtoFRZkkOu0gTiM1KdFTM4JxQ9vtgal5_VFs2BUGV5EhnD0BMx2GUXpOYuajhf02cMt3d0-cf4FTl08vKYWH5NquViCTeo-Ut96yX-DfdEr6A | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxuu5vNPnIsxdLaB4IVeyvJZqKlT-rWQ3-9k_SFguApYcmGkAnMN5lvvhDyYHNvBrT2kpQLj0OoPCUT4_mgUl8LkTFpL_Tbnbj-yp96UW9drO5qYQDAkc-gZLsul6-n2cJelZWt3BlPGN8nBxHnPFqVa22vVNAVJnj-1iyuwBflRvWtGzMERRgIMl7a_P_jJRXnSGrHpLNZwoo_MiwtclXKlr_UGf-9xhNS3NXs0eetNzolezA5I8PKLj9Np4bi2K_1WZMjaoU5XOOY4LQyep_OB_nHmCKQpU6tZIlT0RdLKHKVcBRnQcBIm3I8W3zSNsw1DCVdaQsXSbf22K3WvfXzCt5ABLkXC8EjY0ITB4EwoUghZpnCVjKjEBf6TMaxlDFPJISQpb4ygHZlUQaZTCIIz0lhMp3ABaEY84VG2wytMggIfJlmUaA1w1hEY5ddkqLdqP5sJaDR3-zR1R_f78lhvdtu9VuNTvOaHFnbOYYsvyGFfL6AW8QBubpz1v8GVouy7Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Wireless+and+Telematics+%28Online%29&rft.atitle=Application+of+Convolutional+Neural+Network+Algorithm+for+Analyzing+Sentiments+on+the+Kampus+Merdeka+Policy&rft.au=Irfan%2C+Mohamad&rft.au=Riyadi%2C+Theo+Vectra&rft.au=Atmadja%2C+Aldy+Rialdy&rft.au=Fuadi%2C+Rifqi+Syamsul&rft.date=2024-07-04&rft.pub=IEEE&rft.eissn=2769-8289&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICWT62080.2024.10674724&rft.externalDocID=10674724 |