Cross-Modality Validation of Abdominal Fat and Muscle Segmentation: A Comparative Study of Dixon MR and CT Imaging

This study evaluates the agreement between Dixon-based MRI and CT in quantifying abdominal muscle and adipose tissue areas, aiming to establish MRI as an accurate, radiation-free alternative to the CT gold standard. Twenty subjects underwent abdominal CT and Dixon MRI on the same day, with matched a...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Big Data pp. 8762 - 8764
Main Authors Liu, Andrew, Heller, Andrew, Cohen, Gregg, Jones, Elizabeth C., Hsu, Li-Yueh
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.12.2024
Subjects
Online AccessGet full text
ISSN2573-2978
DOI10.1109/BigData62323.2024.10826022

Cover

Abstract This study evaluates the agreement between Dixon-based MRI and CT in quantifying abdominal muscle and adipose tissue areas, aiming to establish MRI as an accurate, radiation-free alternative to the CT gold standard. Twenty subjects underwent abdominal CT and Dixon MRI on the same day, with matched axial images at L2-L3 and L4-L5 analyzed using semi-automatic software to contour boundaries, apply intensity thresholding, followed by manual refinement of the fat and muscle masks. Bland-Altman plots and linear regression analyses revealed strong agreement between MRI and CT for muscle and subcutaneous adipose tissue (SAT) areas, with mean differences of -0.02 cm 2 and - 1.13 cm 2 and limits of agreement within ±20.46 cm 2 and ±34.71 cm 2 , respectively, while visceral adipose tissue (VAT) showed larger discrepancies, likely due to compression of the abdomen during MRI, with a mean difference of -18.58 cm 2 and a limit of agreement of 20.34 cm 2 . Linear regression confirmed strong correlations with R 2 values of 0.89 for muscle, 0.98 for SAT, and 0.93 for VAT. These findings support MRI as a precise and radiation-free alternative for body composition analysis, particularly for muscle and SAT.
AbstractList This study evaluates the agreement between Dixon-based MRI and CT in quantifying abdominal muscle and adipose tissue areas, aiming to establish MRI as an accurate, radiation-free alternative to the CT gold standard. Twenty subjects underwent abdominal CT and Dixon MRI on the same day, with matched axial images at L2-L3 and L4-L5 analyzed using semi-automatic software to contour boundaries, apply intensity thresholding, followed by manual refinement of the fat and muscle masks. Bland-Altman plots and linear regression analyses revealed strong agreement between MRI and CT for muscle and subcutaneous adipose tissue (SAT) areas, with mean differences of -0.02 cm 2 and - 1.13 cm 2 and limits of agreement within ±20.46 cm 2 and ±34.71 cm 2 , respectively, while visceral adipose tissue (VAT) showed larger discrepancies, likely due to compression of the abdomen during MRI, with a mean difference of -18.58 cm 2 and a limit of agreement of 20.34 cm 2 . Linear regression confirmed strong correlations with R 2 values of 0.89 for muscle, 0.98 for SAT, and 0.93 for VAT. These findings support MRI as a precise and radiation-free alternative for body composition analysis, particularly for muscle and SAT.
Author Cohen, Gregg
Jones, Elizabeth C.
Heller, Andrew
Liu, Andrew
Hsu, Li-Yueh
Author_xml – sequence: 1
  givenname: Andrew
  surname: Liu
  fullname: Liu, Andrew
  email: andrew.han.liu@gmail.com
  organization: National Institutes of Health,Radiology and Imaging Sciences, Clinical Center,Bethesda,MD,USA
– sequence: 2
  givenname: Andrew
  surname: Heller
  fullname: Heller, Andrew
  email: hellera@cua.edu
  organization: Catholic University of America,Department of Electrical Engineering and Computer Science,Washington DC,USA
– sequence: 3
  givenname: Gregg
  surname: Cohen
  fullname: Cohen, Gregg
  email: gregg.cohen@nih.gov
  organization: National Institutes of Health,Radiology and Imaging Sciences, Clinical Center,Bethesda,MD,USA
– sequence: 4
  givenname: Elizabeth C.
  surname: Jones
  fullname: Jones, Elizabeth C.
  email: ejones@cc.nih.gov
  organization: National Institutes of Health,Radiology and Imaging Sciences, Clinical Center,Bethesda,MD,USA
– sequence: 5
  givenname: Li-Yueh
  surname: Hsu
  fullname: Hsu, Li-Yueh
  email: li-yueh.hsu@nih.gov
  organization: National Institutes of Health,Radiology and Imaging Sciences, Clinical Center,Bethesda,MD,USA
BookMark eNo1UEtLw0AYXEXBWvsPPCzeU_f98FZTq4UWQYvXssnuhpVkU5Kt2H9vWvU0fPPNDMxcg4vYRgfAHUZTjJG-fwzV3CQjCCV0ShBhU4wUEYiQMzDRUivKERWEKXQORoRLmhEt1RWY9P0nQohiKTnHI9DlXdv32bq1pg7pAD8GsCaFNsLWw1lh2yZEU8OFSdBEC9f7vqwdfHdV42I6CR_gDOZtszPdcH4Nv7S3h6N7Hr6HmPXbyZhv4LIxVYjVDbj0pu7d5A_HYLN42uQv2er1eZnPVlnQOGWCl96W1FM7dMSFoY4JwzhmjmvuJWNlUSrrC0WVFpzzgXfYHyUcYykMHYPb39jgnNvuutCY7rD9X4n-AOW0XwA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData62323.2024.10826022
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350362480
EISSN 2573-2978
EndPage 8764
ExternalDocumentID 10826022
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-65cfdc3f3d6231ba3e46a4514e595f744cbc8dfb838965554e5e1f6a4551176a3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:57:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-65cfdc3f3d6231ba3e46a4514e595f744cbc8dfb838965554e5e1f6a4551176a3
PageCount 3
ParticipantIDs ieee_primary_10826022
PublicationCentury 2000
PublicationDate 2024-Dec.-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle IEEE International Conference on Big Data
PublicationTitleAbbrev BigData
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177551
Score 1.8956407
Snippet This study evaluates the agreement between Dixon-based MRI and CT in quantifying abdominal muscle and adipose tissue areas, aiming to establish MRI as an...
SourceID ieee
SourceType Publisher
StartPage 8762
SubjectTerms Abdomen
Accuracy
adipose tissue
Computed tomography
Correlation
Dixon
Fats
Linear regression
Magnetic resonance imaging
Muscles
segmentation
Software
Thresholding (Imaging)
Title Cross-Modality Validation of Abdominal Fat and Muscle Segmentation: A Comparative Study of Dixon MR and CT Imaging
URI https://ieeexplore.ieee.org/document/10826022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J5_mx8Rv8uBra7smzerb7BxT6BCdsreR5mMMWSuzBfXXe5O2GwqC9KGlNCHcJpzT9J57ELrs6tQToUccrrRySMCEwyMaOMKnjDEhu5oZvXMyDkfP5H5Kp7VY3WphlFI2-Uy55tL-y5e5KM1WGaxwIMMAOttom_XCSqy13lABIGQA_3VhUd-Lrm4W8wEvOAB8N4AvwS5xmw5-WKlYJBm20bgZQ5VA8uqWReqKr1_lGf89yF3U2Yj28MMajvbQlsr2UbtxbcD1Ij5Aq9gAo5Pk0lJw_AKnylgJ5xr3U5lbny885AXmmcRJ-Q5TCz-p-bLWKWXXuI_jTdlwbJIRP03rweIDukkebcN4gu-W1gSpgybD20k8cmrnBWcR-YUTUqGlCHQgIXZ-ygNFQk6AWikaUc0IEanoSZ32gO2EFAiJosrX5hGgbyzkwSFqZXmmjhCWAWHA2ZSnuSY00nBIY7qrgPdRybxj1DEhnL1VtTVmTfRO_rh_inbMmzQJJT49Q61iVapzoAVFemGnwzf3p7bk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06H_Rpfkz8Ng--trZr0qy-zc2x6TpEp_g20nyMIWtldqD-em-ydkNBkD60lCaE24Rzmt5zD0IXdZ14IvSIw5VWDgmYcHhEA0f4lDEmZF0zo3eOB2H3idy-0JdCrG61MEopm3ymXHNp_-XLTMzNVhmscCDDADrraIMSQuhCrrXcUgEoZEAAitKivhddXk_GbZ5zgPh6AN-CdeKWXfwwU7FY0qmiQTmKRQrJqzvPE1d8_SrQ-O9hbqPaSraH75eAtIPWVLqLqqVvAy6W8R6atQw0OnEmLQnHz3BaWCvhTONmIjPr9IU7PMc8lTiev8Pkwo9qPC2USukVbuLWqnA4NumIn6Z1e_IB3cQPtmFriHtTa4NUQ8POzbDVdQrvBWcS-bkTUqGlCHQgIXZ-wgNFQk6AXCkaUc0IEYloSJ00gO-EFCiJosrX5hEgcCzkwT6qpFmqDhCWAWHA2pSnuSY00nBIY7urgPlRybxDVDMhHL0tqmuMyugd_XH_HG12h3F_1O8N7o7RlnmrJr3Epyeoks_m6hRIQp6c2anxDblJujE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Big+Data&rft.atitle=Cross-Modality+Validation+of+Abdominal+Fat+and+Muscle+Segmentation%3A+A+Comparative+Study+of+Dixon+MR+and+CT+Imaging&rft.au=Liu%2C+Andrew&rft.au=Heller%2C+Andrew&rft.au=Cohen%2C+Gregg&rft.au=Jones%2C+Elizabeth+C.&rft.date=2024-12-15&rft.pub=IEEE&rft.eissn=2573-2978&rft.spage=8762&rft.epage=8764&rft_id=info:doi/10.1109%2FBigData62323.2024.10826022&rft.externalDocID=10826022